學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73901
Browse
6 results
Search Results
Item 國中生雙語數學課之學習表現及其觀點(2024) 陳郁柔; Chen, Yu-Jou本研究之目的為探討國中生在經過雙語數學課堂中的學習後,數學學習表現及對雙語數學課的觀點之情況,並以國七一元一次方程式為數學主題。本研究採用混合形式的研究方法,根據研究目的,設計雙語教學實驗及相關的評量工具以蒐集資料。研究過程中蒐集量化資料,以分析兩組學生之學習表現並將其做比較,同時蒐集開放式情意資料,進行關鍵字提取以設計封閉式問卷,探討學生對於雙語數學課的觀點,並將所得資料做統計分析,最後將所得結果加入教學影片分析和研究者即教學者的觀察,進行合併報導。根據研究結果顯示:(1)有關列式、計算類型的題目加入英文,對數學的學習影響不大,反而學生多了用英文唸數學式子的學習歷程,不過在「表徵轉換」和「概念性知識」的講解加入英文,對學生的學習表現產生影響。(2)雙語班學生在作答較短且課堂常用的單字表現較佳,而學生可能只記字母,因此同字母單字同時出現易混淆。數學式子中含有運算符號或性質符號的英文唸法之表現不如數學式子為單項的英文唸法,部分概念知識的學習表現有受到英文加入的影響且學生對於解方程式所使用的英文敘述不熟悉,對於解題步驟的中英文敘述能力皆有待加強。(3)國七生對「雙語數學課的情意參與」中的「自我提升」和「雙語數學課的認知參與」中的「意願參與」顯著認同。關於「雙語數學的教學方法」中的「連結思考」、「反覆練習」和「學生活動、遊戲分組」顯著認同,「英文主導中文輔助」則顯著不認同。此外,學生對於「雙語數學的評量」中的「獎勵取向」、「英文壓力」、「多元評量」和「英文協助」顯著認同,而「英文能力」則是顯著不認同。Item 七年級學生在魔術情境融入一元一次方程式建模活動的學習歷程與成果(2023) 林軒如; Lin, Hsuan-Ju一元一次方程式是從算術思維進入代數思維的重要階段。在課程安排上,國中的數學包含許多代數相關的內容,方程式是後續代數概念的基礎在代數學習中佔有重要的地位。許多研究指出學生在學習一元一次方程式這個單元時出現困難,學者認為其原因有兩者:缺乏具體情境的引導、過多枯燥的運算導致學生反感無興趣兩者。因此本研究期望透過將魔術情境融入建模活動的方式,改善前述兩者所帶來的學習困難。本研究採個案研究法,旨在探討六名不同程度的國一學生在魔術情境融入一元一次方程式建模活動中的學習歷程以及活動後成就和情意的改變。通過活動單、成就及情意前後測、課堂錄音與訪談記錄等資料,以數學建模循環結合一元一次方程式解題歷程分析學生的學習歷程,並探討鷹架介入對學習歷程的影響,再以成就及情意前後測分析活動帶來的改變。引模活動中學生所使用的介入主要為輔助設未知數及列式。探模活動一中學生開始主動設未知數、列方程式、並試圖解方程式,介入主要著重於一元一次方程式的簡化及整理的迷思概念釐清。探模活動二介入數量提升的主要原因為情境的加深,透過活動(人造物)的引導才有機會觀察出此現象。學生經過一元一次方程式建模活動後皆認為有助於後續一元一次方程式應用問題的學習主要原因包含:加快上課理解速度、解一元一次方程式模型沿用、測驗分數提高。成就測驗前後測呈現顯著差異,學生從願意試著以符號代表數的方式解題;情意問卷前後測呈現顯著差異,因為情境有趣使得他們更加投入。Item 國中代數桌上遊戲之設計與實作:以一元一次方程式為例(2021) 翁良綺; Weng, Liang-chi本研究旨在設計學習一元一次方程式桌上遊戲,使學生從桌上遊戲中體會並建立等量公理的概念,促進學生對於學習數學的興趣,期望提升學生的學習成效。主要研究提出兩個問題:(1) 如何設計與實作出代數桌上遊戲來學習一元一次方程式? (2) 在此學習工具影響下學生學習成效為何? 本研究採準實驗研究法,研究者針對國一一元一次方程式內容設計桌遊,以APOS理論結合多重表徵,讓學生能在處理等量公理概念時,透過行動建立數學概念,並在正式活動時搭配學習單,讓學生有更多的學習。研究者以某公立國中七年級學生共146人,實驗組學生進行桌上遊戲活動,對照組學生閱讀指定文本,並針對兩組進行前後測與學習感受度問卷,分析學生在活動前後之學習成效與學習感受。 研究結果如下:桌遊設計過程中,需要依據適當的理論進行修改與評估,可以幫助數學概念與遊戲結合。高程度學生在兩種不同教學介入之下學習成效皆沒有顯著的進步,低成度學生在桌遊教學介入下,平均學習成效有顯著進步。而在學習感受度上兩組沒有顯著差異,但部分學生在施測活動進行時表示同意桌遊的有趣性。從上述結果可得知,研究者設計之一元一次方程式桌上遊戲有助於低程度學生提升學習成效,適合作為奠基教學,且不論學習成效與學習感受度皆不差於閱讀文本的學生。而對於高程度學生,適合在遊戲中融入更多代數運算規則與概念,才能促使學生做出更深層的思考,將技能與概念結合融入一元一次方程式中。Item 教具融入等量公理教學之設計與實作(2021) 蔡宜玫; Tsai, Yi-Mei本研究旨在探討一元一次方程式單元等量公理概念教具的設計與實作,並比較實體教具融入教學與傳統教學對於學習者的數學學習感受度以及學習成效 有何差異。操弄變項分為兩個維度,分別為教學方法(實驗組、對照組)以及數學程度(高分組、低分組)。主要研究提出兩個問題:(1)如何設計與實作出等量公理教具來學習一元一次方程式?(2)在此學習工具下學生學習成效與學習感受 度為何?本研究採準實驗研究法,研究者針對國一的一元一次方程式內容設計實體教具,以 APOS 理論結合多重表徵融入教學設計中,希望能讓學生在學習等量公理解一元一次方程式時,透過實際操作教具建立數學概念,並且在正式教學活動時搭配活動學習單,讓學生有機會做各種表徵之間的轉換。研究者以新北市某公立國中七年級學生作為研究對象,學生均為常態分班, 男女合班,挑選兩個班級,分別進行實驗組及對照組的施測,實驗組學生 (25 人)進行教具融入教學,對照組學生 (20 人)進行傳統教學。並利用前測測驗總 分為依據,滿分為 17 分,將實驗組與對照組中的學生再分為高分組與低分組, 進行教學實驗。並且針對兩組進行前後測與學習感受度問卷,分析學生在教學 活動前後之學習成效與學習感受。主要研究結果如下: (1) 在學習表現上實驗組與對照組的高程度學生在兩種不同教學介入之下,學習成效沒有皆沒有顯著的進步,實驗組低程度學生在實體教具融入教學介入下,學習成效達顯著進步。 (2) 在學習感受上實驗組與對照組的不同程度學生在認知感受、信心、自我效能、情意、主動性、學習策略表現均顯著高於對照組。 由上述的研究結果得知,研究者設計之一元一次方程式等量公理實體教具有助於低程度的學生提升學習成效,學習者藉由實際的操作教具有助於概念的學習與各表徵間整合。而對於高程度的學生,適合在教具融入教學中加入更多代數運算規則與概念,才能促使學生做更高層次的思考。未來可以針對不同的教學策略以及引入數位工具之虛擬教具,探討如何讓學生在學習一元一次方程式提高學習成效。Item 七年級學生學習一元一次方程式之錯誤類型分析-以一所都會型學校為例(2012) 王釋緯本研究旨在探討七年級學生對於一元一次方程式學習上的錯誤類型,也希冀能幫助身處教學第一現場的教師,從中掌握學生的認知,了解學生的思維模式,更進一步能協助孩子在學習方程式的路上順利達陣。 研究中透過「一元一次方程式」預試卷先針對八、九年級已經學過一元一次方程式的學生蒐集資料並從中歸納出一些典型的錯誤類型,並檢驗題意敘述是否能讓學生適度的理解,經由與專家教師間的互動討論及指導教授的指導建議後修正,產生「一元一次方程式」正式卷,並透過施測141位都會型學校的七年級學生,以蒐集並分析學生對於一元一次方程式之錯誤類型。 本研究之主要結論將學生之錯誤類型統整歸類分成以下三大類: 一、一元一次式: 1.文字符號簡記或合併的錯誤。 2.運算規則不清的錯誤,含分配律、先乘除後加減等等。 3.源自於正負數加減運算的不熟練或是概念不清的錯誤。 二、一元一次方程式: 1.誤用等量公理或移項法則所產生的錯誤。 三、一元一次方程式的文字題 1.解讀題意轉譯成數學語言的錯誤。 2.對於所假設的未知數對象不清楚所產生的錯誤。 最後在文末針對以上各錯誤類型,提出一些有關於教學與研究上的建議,以供教學現場的教師或是未來相關的研究者作為參考。Item 國一學生數學類比遷移現象的探討—「以等量公理解一元一次方程式」為例(2005) 王婉馨本研究的目的是利用動態評量的漸進提示促進國中生類比遷移( analogical transfer ),以探討國一學生的數學類比遷移現象。所選取的對象為中部某大型國中的一個國一常態班級,共計37位學生參與。 研究者針對「以等量公理解一元一次方程式」單元,設計漸進提示以及測驗卷,以一連串的「測驗—提示—測驗」的方式進行,以便探討國一學生學習歷程中的數學類比遷移現象,並分別就研究對象中35個有效樣本之類比遷移表現,探討下列三個研究問題:一、國一學生在動態評量的漸進提示下,進行成功的數學類比遷移時所需要的漸進提示特質為何?二、國一學生進行類比遷移時的表現,在解決「表異結似」的各類問題時,有何差異?三、學生擁有成功解決「表似結似」問題(均是合併x項的一元一次方程式)的經驗之後,若提供另一類「表異結似」的標的問題(不只合併x項,還須合併常數項的一元一次方程式)所需的漸進提示,國一學生類比遷移的表現是否提升? 本研究的研究結果發現: 一、成功的數學類比遷移所需的要素有「憶取」、「映射」、「調適」三要素。經由動態評量的漸進提示,研究者發現,此三要素隱含於成功的數學類比遷移者的解題思維中,且國一學生進行成功的數學類比遷移時所需要的漸進提示特質,因人而異,部分學生只需提供一個要素,即能成功地進行數學類比遷移;部分學生則分別需要提供二、三個要素,才能夠成功地進行數學類比遷移;另一部分學生則未進行數學類比遷移。 二、國一學生進行類比遷移時的表現,受到問題之間表面相似性的影響,而有不同。對於擁有成功地類比解題經驗的學生而言,若要將先前成功的經驗進行類比遷移,以解決後續「表似結似」的問題,並沒有太大的困難。對於擁有成功地類比解題經驗的學生而言,若要將先前成功的經驗做適當的「調適」,來進行類比遷移,以解決後續「表異結似」的各類問題,相對地較為困難。 三、提供另一類「表異結似」的標的問題所需的漸進提示後,國一學生類比遷移的表現有提升。 最後,根據本研究中的實際發現與分析討論之結果,提出建議,以供教師教學上或未來的後續研究上的參考之用。