解絕對值方程式的新平滑函數
dc.contributor | 陳界山 | zh_TW |
dc.contributor | Jein-Shan Chen | en_US |
dc.contributor.author | 余政和 | zh_TW |
dc.contributor.author | Cheng-He Yu | en_US |
dc.date.accessioned | 2019-09-05T01:05:44Z | |
dc.date.available | 2015-07-29 | |
dc.date.available | 2019-09-05T01:05:44Z | |
dc.date.issued | 2015 | |
dc.description.abstract | 無中文摘要 | zh_TW |
dc.description.abstract | The system of absolute value equations Ax + B|x| = b, denoted by AVEs, is a non-differentiable NP-hard problem, where A,B are arbitrary given n × n real matrices and b is arbitrary given n-dimensional vector. In this paper, we study four new smoothing functions and propose a smoothing-type algorithm to solve AVEs. With the assumption that the minimal singular value of the matrix A being strictly greater than the maximal singular value of the matrix B, we prove that the algorithm is globally and locally quadratically convergent with the four smooth equations. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | G060240031S | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060240031S%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101534 | |
dc.language | 英文 | |
dc.subject | 平滑函數 | zh_TW |
dc.subject | 奇異值 | zh_TW |
dc.subject | 收斂 | zh_TW |
dc.subject | Smoothing function | en_US |
dc.subject | singular value | en_US |
dc.subject | convergence | en_US |
dc.title | 解絕對值方程式的新平滑函數 | zh_TW |
dc.title | New Smoothing Functions for Absolute Value Equation | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 060240031s01.pdf
- Size:
- 691.48 KB
- Format:
- Adobe Portable Document Format