解絕對值方程式的新平滑函數
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
無中文摘要
The system of absolute value equations Ax + B|x| = b, denoted by AVEs, is a non-differentiable NP-hard problem, where A,B are arbitrary given n × n real matrices and b is arbitrary given n-dimensional vector. In this paper, we study four new smoothing functions and propose a smoothing-type algorithm to solve AVEs. With the assumption that the minimal singular value of the matrix A being strictly greater than the maximal singular value of the matrix B, we prove that the algorithm is globally and locally quadratically convergent with the four smooth equations.
The system of absolute value equations Ax + B|x| = b, denoted by AVEs, is a non-differentiable NP-hard problem, where A,B are arbitrary given n × n real matrices and b is arbitrary given n-dimensional vector. In this paper, we study four new smoothing functions and propose a smoothing-type algorithm to solve AVEs. With the assumption that the minimal singular value of the matrix A being strictly greater than the maximal singular value of the matrix B, we prove that the algorithm is globally and locally quadratically convergent with the four smooth equations.
Description
Keywords
平滑函數, 奇異值, 收斂, Smoothing function, singular value, convergence