局部體和總體體上的布勞爾群之算術
dc.contributor | 紀文鎮 | zh_TW |
dc.contributor.author | 王凱民 | zh_TW |
dc.date.accessioned | 2019-09-05T01:15:36Z | |
dc.date.available | 2012-7-19 | |
dc.date.available | 2019-09-05T01:15:36Z | |
dc.date.issued | 2012 | |
dc.description.abstract | 我們研究布勞爾群的算術性質,交積代數,循環代數以及它們之間的連結。 在第一節中,我們將知道一個體的布勞爾群中的每一個類都可以用一個在此 體上的中央簡易代數表現。 在第二節中,我們對交積代數有澈底地討論。 在第三節中,我們討論循環代數。 在第四節中,我們探索在局部體上的循環代數與以此體為中心並有有限指數 的偏體之間的關係。 在最後一節中,我們考慮在總體體上的中央簡易代數。 | zh_TW |
dc.description.abstract | We study some arithmetical properties of Brauer groups, crossed-product algebras, cyclic algebras, and the connection between them. In §1, we will show that each class in the Brauer group of a field K is represented by a central simple K-algebra. In §2, we begin with a thorough discussion of crossed- product algebras. In §3, we discuss the cyclic algebras. In §4, we explore the relations between cyclic algebras over a local field K and skewfields with center K and finite index. In §5, we consider central simple algebras over global fields. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | GN0696400090 | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0696400090%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101770 | |
dc.language | 英文 | |
dc.subject | 布勞爾群 | zh_TW |
dc.subject | 哈斯範數定理 | zh_TW |
dc.subject | 格朗沃-王定理 | zh_TW |
dc.subject | 哈斯不變量 | zh_TW |
dc.subject | Brauer group | en_US |
dc.subject | Hasse norm theorem | en_US |
dc.subject | Grunwald-Wang theorem | en_US |
dc.subject | Hasse invariant | en_US |
dc.title | 局部體和總體體上的布勞爾群之算術 | zh_TW |
dc.title | On the Arithmetic of Brauer Groups over Local and Global Fields | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n069640009001.pdf
- Size:
- 504.87 KB
- Format:
- Adobe Portable Document Format