局部體和總體體上的布勞爾群之算術
No Thumbnail Available
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
我們研究布勞爾群的算術性質,交積代數,循環代數以及它們之間的連結。
在第一節中,我們將知道一個體的布勞爾群中的每一個類都可以用一個在此
體上的中央簡易代數表現。
在第二節中,我們對交積代數有澈底地討論。
在第三節中,我們討論循環代數。
在第四節中,我們探索在局部體上的循環代數與以此體為中心並有有限指數
的偏體之間的關係。
在最後一節中,我們考慮在總體體上的中央簡易代數。
We study some arithmetical properties of Brauer groups, crossed-product algebras, cyclic algebras, and the connection between them. In §1, we will show that each class in the Brauer group of a field K is represented by a central simple K-algebra. In §2, we begin with a thorough discussion of crossed- product algebras. In §3, we discuss the cyclic algebras. In §4, we explore the relations between cyclic algebras over a local field K and skewfields with center K and finite index. In §5, we consider central simple algebras over global fields.
We study some arithmetical properties of Brauer groups, crossed-product algebras, cyclic algebras, and the connection between them. In §1, we will show that each class in the Brauer group of a field K is represented by a central simple K-algebra. In §2, we begin with a thorough discussion of crossed- product algebras. In §3, we discuss the cyclic algebras. In §4, we explore the relations between cyclic algebras over a local field K and skewfields with center K and finite index. In §5, we consider central simple algebras over global fields.
Description
Keywords
布勞爾群, 哈斯範數定理, 格朗沃-王定理, 哈斯不變量, Brauer group, Hasse norm theorem, Grunwald-Wang theorem, Hasse invariant