化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    奈米金氣體感測材料之線性溶合能量關係模型與類場效電晶體測試之研究
    (2014) 駱 雅凡; Ya-Fan Lo
    本研究將奈米金氣體感測材料結合微小化化學感測器(阻抗式化學感測器chemiresistor,CR,以及質量式感測器─石英微量天平quartz crystal microbalance,QCM)所組成的氣體感測系統,量測其阻抗及頻率的變化。所使用的氣體感測材料為四種不同的「單層有機分子膜包覆的奈米金簇 (monolayer protected gold nano-cluster,MPC)」,藉由包覆於奈米金表面分子之官能基不同,探討四種具有不同官能基的氣體感測材料對於十六種有機氣體的吸附靈敏度以及反應機構。實驗結果發現,含長碳鏈的奈米金材料對於氣體的吸附較佳,且對於極性氣體之感測靈敏度,有苯環的感測材料優於含酯基的感測材料。接著,我們利用QCM裝置感測有機氣體的量測結果,將其所求得的氣體吸附平衡常數K (partition coefficient) 與待測氣體之溶劑參數進行多元線性迴歸,分別計算出四種材料的線性溶合能量關係模型 (linear solvation energy relationship model,LSER model),並藉由此模型探討各材料中,氣體吸附平衡常數與各化學作用力之間相關連的程度,實驗結果發現作用力中的極性與氫鍵酸之作用,對於Au-ESTER在吸附氣體時的影響較大,凡德瓦力則是和碳數多的Au-C8與Au-10C較相關;此外,我們將氣體的溶劑參數分別代入四種氣體感測材料的LSER model之中,得到的 值與實驗結果有相同的趨勢,因此此模型可以用來作初步簡易的吸附選擇性預測;最後,嘗試將微小指叉電極改製成類似場效電晶體的構造,塗佈上兩種氣體感測材料Au-TBT和Au-C8,進行電性量測,結果在電壓增加到某個大小後,電流值會陡升,並觀察當輸入閘極電壓進行氣體感測時靈敏度之變化,結果靈敏度是沒有提升的現象。
  • Item
    奈米金表面電漿共振原理應用於中空光纖式氣相層析偵測器之研製
    (2012) 陳鳳宜
    本研究將中空光纖感測器串聯於氣相層析儀作為新型態有機揮發性氣體(Volatile Organic Compounds;VOCs)感測器。其原理乃利用奈米金屬粒子吸附有機氣體分子會造成局部性表面電漿共振(Localized Surface Plasmon Resonance;LSPR)光譜改變。本實驗所製備的奈米金粒子是利用檸檬酸鈉將四氯金酸(HAuCl4)還原成金原子,藉由自組裝薄膜反應機制將奈米金粒子修飾於中空光纖內層表面,其修飾劑為含有胺基(-NH2)的APTMS。將此感測器串聯於氣相層析儀,藉由綠光二極體(LED)提供一固定光源,穿過中空光纖管壁至另一端由綠光感測器所接收,當有機氣體流經層析管柱分離後,會被中空光纖表面的奈米金粒子所吸附而導致光強度有所變化,並利用雙低通濾波來提升綠光感測器之訊雜比及補償訊號飄移問題。此感測器成功地測試了十種混合有機氣體,結果顯示訊號反應迅速且具有良好的穩定性以及線性關係(R2≧0.99),其偵測下限範圍可達60 ~ 185 ng,此偵測下限值比以往文獻中利用表面電漿共振原理來感測氣體還低。在未來的發展可將此奈米金中空光纖式表面電漿共振感測器應用於微小化氣相層析儀。
  • Item
    奈米金殼層結構與氣體感應機構之研究
    (2010) 蔡佳容; Chia-Jung Tsai
      本研究中利用五種不同的『單層有機分子膜包覆的奈米金簇(Monolayer Protected Gold Nano-Cluster,MPC)』做為感測材料,將MPC塗佈於阻抗式(Chemiresistor,CR)及質量式(Quartz Crystal Microbalance,QCM)感測器上,對於十種揮發性有機氣體(Volatility Organic Compound,VOC)做偵測,藉以探究奈米金殼層結構與氣體吸附反應機構間的關係;另一方面,對於奈米金粒子作一系列的材料鑑定,分別有UV-Visible spectrum、TEM、SEM、EDS,用以觀察材料之粒徑大小、表面情況,此外利用電化學交流阻抗分析法(electrochemical impedance spectroscopy,EIS),加強奈米金感測材料的純化鑑定。而氣體感測主要分為兩部分探討,首先評估材料AuTBT、AuEBT、AuPEM,它們於阻抗式感測器的靈敏度差,CR/QCM數值0.074 (AuTBT─butylacetate)~1.187(AuPEM─octane),在質量式感測器中靈敏度最高可達11.544(AuTBT─butylacetate),可知材料AuTBT有極好的氣體吸附效果。第二部分中針對AuTBT、AuC8及AuC8mixTBT探討,當AuC8mixTBT(10:1)同時具有AuC8飽和碳鏈伸縮性及AuTBT對於氣體吸附效果,兩種官能基同時存在對於氣體感測靈敏度CR/QCM提升至9.192(butanol)~67.116(octane),置換前後的感測表現為探討重點。
  • Item
    利用奈米金標記與冷凍電子顯微鏡定位蛋白質複合體的次單元:RNA聚合酶II/TFIIF複合體的研究
    (2007) 翁依蘋
    冷凍電子顯微鏡已經成為結構生物學中一個成熟的工具,特別是可以用來解析無法結晶的巨分子蛋白複合物的近原子結構。在真核生物的蛋白複合物結構生物學中,要去定位每一個獨立的蛋白質次單元是一件非常重要的問題。 傳統上,免疫金(約 5~10 nm)的標記技術被利用在標記獨立的次單元,而負染色電顯足以有效造影。然而免疫金技術需針對蛋白質複合體上的每一個次單元體培養單株抗體,已特異標定次單元體的位置,這種作法是相當昂貴且耗費時間的。此外,由於我們需要較高解析度的影像,免疫金的大小過大(約 5~10 nm),不適合較高解析度的次單元體定位,因此我們在此使用較小的奈米金(1.8 nm)進行標定。 人類基本核酸代謝的酵素複合物大部分在酵母菌中可以找到對應之同源蛋白質複合物,我們利用對酵母菌做基因的操控便利,將小段的胜肽插入所要尋找的次單元中,並利用可辨識該胜肽的小蛋白標記奈米金去定位此段胜肽。 在本篇論文中,我們針對RNA聚合酶轉錄因子TFIIF做研究,它是具有三個次單元的轉錄起始因子,我們能夠純化具有這三個次單元的RNA聚合酶(Tfg1、Tfg2、Tfg3),並在每個次單元中插入攜鈣素親和胜肽(Calmodulin binding peptide),再以純化之攜鈣素(Calmodulin)標記奈米金,使標記奈米金的攜鈣素能與攜鈣素親和胜肽結合,達到定位次單元的目的。 一開始,我們成功的達到這樣的結果,並且利用醋酸鈾負染色取得高對比電顯影像,但是後來我們無法從電顯影像分辨真實的奈米金與醋酸鈾奈米顆粒的差別,導致影像處理上變得非常困難。因此,我們必須利用冷凍電子顯微鏡去觀察,才不會有負染色背景的訊號。於是需找到適合的條件,做出乾淨的無序冰,並且取得RNA聚合酶和1.8 nm的奈米金分別的影像。目前我們正利用此項冷凍電子顯微鏡的技術去取得被1.8 nm的奈米金標記RNAP/TFIIF的影像,以達到定位Tfg1、Tfg2、Tfg3的目的。
  • Item
    奈米金表面電漿共振應用於不同微結構之有機氣體感測器研製
    (2018) 林珮盈; Lin, Pei-Ying
    利用不同基材研究兩種不同微結構的氣體感測器,分別在陽極氧化鋁薄膜與玻璃毛細管內部塗佈奈米金粒子,藉由其表面電漿共振現象,以量測多種不同官能基的揮發性有機化合物。以上兩個氣體感測器皆搭配反射式光纖,藉此縮小感測光徑範圍,只需單一光點即可進行氣體偵測。經熱處理過的奈米金陽極氧化鋁薄膜感測器,所偵測的八種氣體皆呈現良好的線性關係(R2 >0.99)及再現性,偵測下限則尚有進步的空間,範圍為275 ~871 ppm。另外,使用3-胺基丙基三乙氧基矽烷和四乙氧基矽烷,透過自組裝薄膜反應機制將多層奈米金粒子修飾於內徑為0.8 mm的玻璃毛細管內壁,並與氣相層析儀串聯,成功地偵測十六種有機氣體,其結果顯示具有良好再現性、靈敏度及線性關係(R2 >0.99),對於分子量、極性與折射率越大且沸點越高的化合物有較好的靈敏度,其中m-xylene與cyclohexanone的偵測下限皆小於20 ng。這些局部表面電漿共振感測器,開啟了未來偵測器進一步微小化的可能性。
  • Item
    奈米金-蛋白質結構探討與應用
    (2015) 王姵婷; Wang, Pei-Ting
    為瞭解生化物質遭受外力破壞時可能引起的生化功能與結構變異,本論文以人工細胞作為先驅模型,探討其暴露於酸鹼物質或是氧化劑環境中時可能遭受的結構變異。實驗結果顯示:若以牛血清蛋白與奈米金微粒進行反應,可製得不同性質的人工細胞(簡稱Au@BSA),並可藉以探討蛋白質變質現象。原子力影像分析(AFM)顯示,若將Au@BSA浸置於1 M的氫氧化鈉溶液中時,細胞壁與探針間的黏滯力會隨浸置時間增長而上升,而細胞表面的導電度也會隨之提高,但經五分鐘後,二者漸趨定值。若將Au@BSA改浸置在1 M鹽酸中,其結果與氫氧化鈉結果相似。我們也將Au@BSA暴露於含氧活性物的環境中,發現其破壞力遠大於酸鹼物質。此外,本論文也探討Au@BSA作為化學感測器的應用潛力,發現其可經由螢光變化分析過氧化氫與葡萄糖,並可發展成生化邏輯電路,極具應用潛力。 關鍵字:奈米金、人工細胞、原子力顯微鏡、變性、力曲線分析法