化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 一、2-碘苯甲醯胺衍生物和炔丙基二羰基化合物以銅金屬催化進行氧化級聯雙環化反應合成3-羥基-3-呋喃基異吲哚酮衍生物二、以一鍋化方法進行克腦文蓋爾縮合反應/亞胺化/π-Aza 電環化合成三取代吡啶三、以銅金屬進行串連環化異吲哚並 [1,2-b] 喹唑啉-12(10H)-酮和 5,13-二氫11H-喹唑啉 [2,3-b]喹唑啉-11-酮衍生物(2023) 林豊鈞; Lin, Li-Chun一:利用2-碘苯甲醯胺衍生物和炔丙基二羰基化合物作為起始物並利用銅催化促成氧化級聯分子間雙環化來進行3-羥基-3-呋喃基異吲哚啉酮衍生物的一鍋化合成。本次的策略包含環化反應、偶聯反應、雙C(sp3)-H官能化。本次合成3-羥基-3-呋喃基異吲哚啉酮衍生物的策略是利用不同取代基的2-碘苯甲醯胺衍和各種不同的炔丙基二羰基及炔丙基磺醯基芳基酮。二:我們開發出一種以溴丙烯醛、苯甲醯乙腈和乙酸銨為起始物並利用銅金屬進行催化反應歷經三個不同反應後生成三取代吡啶。3-溴丙烯醛與苯甲醯乙腈會先進行克腦文蓋爾縮合反應形成2,4-二烯酮隨後和氨進行反應,並生成相應的氮雜三烯。最後經過6π-氮雜電環化/芳構化反應並生成三取代的吡啶。三:我們開發出一種反應過程簡單、產率高的一鍋化方法,透過銅催化將N-(2-溴芐基)-2-碘苯甲醯胺的進行串聯反應而合成出吲哚並 [1,2-b] 喹唑啉-12(10H)-酮和氰化銅Item 第一部分 通過 BF3.Et2O 介導的 1-萘酚和 Ynones 的一鍋級聯 4,5-環化反應合成 Perinaphthenones 第二部分 3-溴丙烯醛與苯胺反應合成α-溴烯胺酮的研究(2022) 勃喀許; Prakash Bhimrao Patil中文摘要 第一部分 本部分包含一章,闡述了路易斯酸介導的炔酮和1-萘酚的環化反應。 第 1 章:“通過 BF3.Et2O 介導的 1-萘酚和 Ynones 的一鍋級聯 4,5-環化反應合成 Perinaphthenones” 我們提供了一種簡單而獨特的方法,用於使用 α-萘酚與 ynone 的 C4-C5 環環化反應合成高度取代的環萘酮。我們使用現成的起始材料在 30 分鐘內在 C4-C5 位點完成了 1-萘酚的脫芳香環環化,收率從良好到中等。此外,所提出的程序不僅可以替代前述方法,而且還可以簡單地合成迄今為止難以獲得的 4,6-二芳基環萘酮衍生物。我們還注意到新創建的化合物是發光的。 關鍵詞:環萘酮;圍產期; α-萘酚;伊諾內斯;無溶劑。 第二部分 本部分闡述了α-溴烯胺酮的合成及其應用 第 2 章:“3-溴丙烯醛與苯胺反應合成 α-溴烯胺酮的研究” 使用一鍋法描述了-溴烯胺酮的合成。不需要外部溴化劑,因為反應由對甲苯磺酸一水合物 (TsOH.H2O) 介導的 3-溴丙烯醛與苯胺在二甲亞砜 (DMSO) 中的反應催化。在鄰位連接有空間位阻吸電子基團的苯胺用於進行化學選擇性1,2-加成。此外,使用額外的苯胺衍生物作為親核試劑的反應產生了少量的 1,4-加成產物。對於苯胺衍生物,3-溴丙烯醛表現出廣泛的反應性。關鍵詞:一鍋法合成; α-溴烯胺酮;3 溴丙烯醛;苯胺;二甲基亞砜。 第三部分 本部分包含通過溶劑捕獲異納扎羅夫中間體合成環戊烯稠合衍生物。 第 3 章:“碘介導的與乙腈/丙酮的間斷 Iso-Nazarov 反應用於獲得高度取代的環戊烯稠合衍生物。” 我們實現了前所未有的碘介導溶劑捕獲的共軛二烯底物異納扎羅夫反應,以產生非對映選擇性環戊烯稠合衍生物。目前的方法是第一個捕獲共軛二烯醛在乙腈/丙酮中的異納扎羅夫反應中產生的環戊氧基烯丙基陽離子。 關鍵詞: 異納扎羅夫, 乙腈, 丙酮,Item (一) 使用鄰羥基對亞甲基苯醌經由 1,6-膦加成/氧-醯化/威悌反應建構官能化苯并呋喃衍生物(二) 膦催化之化學選擇性還原/亞硝酸離去/威悌反應建構 3-烯基苯并呋喃衍生物(三) 亞烷基米氏酸與亞胺葉立德經 (3+2) 環加成/內酯化反應合成高鏡像選擇性之𠳭酮[4,3-b]吡咯啶(2022) 柳彥成; Liou, Yan-Cheng(一)穩定的鄰羥基對亞甲基苯醌化合物通過有機膦、醯氯和鹼處理,在無金屬且溫和條件下,有效合成官能化的苯并呋喃。同時,在催化條件下亦證明此一鍋化法之1,6-膦加成/氧-醯化/威悌反應,具有相似的合成官能化苯并呋喃的功效。(二)經由使用催化量的膦試劑進行分子內威悌反應,提供在無金屬條件下建構官能化 3-烯基苯并呋喃的有效方法。該一鍋化反應是通過將有機膦進行麥可加成到氧-醯化之硝基苯乙烯而引發,其中膦是通過用苯基矽烷對氧化膦進行化學選擇性還原而生成,從而產生膦葉立德,通過氧-醯化/亞硝酸消除/威悌反應製備多官能化的 3-烯基苯并呋喃衍生物。 (三)亞烷基米氏酸與亞胺葉立德經由硫脲片段衍生之金雞納鹼催化下,在短時間內進行 (3+2) 環加成/酯交換反應,在短時間內建構優異產率與鏡像選擇性之𠳭酮[4,3-b]吡咯啶衍生物。此外,我們根據實驗結果的發現,提出了催化劑與亞烷基米氏酸活化的反應模型。Item 高解析度線性飛行時間式質譜儀之通用原理的開發與應用(2023) 蔡易宏; Cai, Yi-Hong高質量解析度的質譜儀(mass spectrometer)對於許多領域的研究是強而有力的重要工具,因此提高質譜儀的質量解析度是一項至關重要的課題。到目前為止,高質量解析度的質譜儀有軌道阱質譜儀(orbitrap mass spectrometer)、離子迴旋共振式質譜儀(FTICR mass spectrometer)與多圈式飛行時間式質譜儀(multi-turn time-of-flight mass spectrometer)等。這些高質量解析度的質譜儀有一共通缺點,在高質荷比(mass-to-charge ratio)範圍分析之靈敏度會大幅度下降,因此這個問題會導致儀器無法在高m/z範圍作質量分析。線性飛行時間式質譜儀(linear time-of-flight mass spectrometer)對於高範圍質荷比有極佳的靈敏度,同時對於質量量測的速度也非常快,但其質量解析度不佳。現有的最佳化方法對此類型儀器的並不是非常有效,或者必須通過犧牲質量範圍和靈敏度來實現高質量解析度。本研究發展出耦合空間與速度聚焦之理論,能夠使線性飛行時間式質譜的質量解析度大幅度上升。這個聚焦理論結合大數據之分析,可以充分了解到儀器中各種實驗參數與質量解析度關係,進而預測出最恰當的儀器設計。除此之外,這個研究結果對線性飛行時間式質譜儀中兩大普遍的迷思: 「質量解析度正比於離子的飛行時間」與「質量解析度與質量並無明顯相關性」,提出不同的看法與解釋所造成的原因。過往的研究因為運算資源與最佳化方法不足,很難歸納出質量解析度與儀器中各種參數之關聯性。在建立此聚焦理論前,必須先了解游離源產生離子的原理。不同游離的方法導致質量解析度下降的因素會不同,所以最佳化過程中需要離子聚焦的方式也會因此不同。此研究會著重於基質輔助雷射脫附游離法(matrix-assisted laser desorption/ionization),因為此技術是飛行時間式質譜儀在高m/z範圍的分析最常使用游離源之一。此技術在高分子量物質的檢測有很好的靈敏度與便利性,所以此技術被廣泛地應用在各種領域的研究上。此游離源是利用雷射脫附的原理,使物質從固態直接昇華成為氣態離子。這個過程會使同質量的離子有不同的初始動能,而這些初始動能的差異會導致儀器的質量解析度大幅度下降。耦合空間與速度聚焦是能夠對離子初始動能差異進行有效的補償之方法,並且準確地預測出線性飛行時間式質譜儀中的最佳實驗參數,使質量解析度大幅度提升。這些實驗參數包括提取區域、加速區域與儀器整體等長度,此外還有儀器內各種電壓大小之配置與提取延遲之時間。為了能系統性地進行實驗參數的最佳化,本論文首次引進飛行時間拓樸之概念。飛行時間拓樸是離子群在儀器中的飛行時間分布之特質,而且每一組實驗參數無論是否有經過最佳化都只會對應出一種飛行時間拓樸。經過大量的最佳化運算後,這些飛行時間拓樸型態可以藉由大數據分析來分類,目前歸納出的飛行時間拓樸種類為「無轉折點」、「一最大飛行時間轉折點」、「一最小飛行時間轉折點」與「一最大與一最小飛行時間轉折點」等四種。不同型態的飛行時間拓樸會有不同程度的離子聚焦效果,因此彼此之間的質量解析度上限差距非常大,可以從數倍至數千倍以上。在此計算模型的預測下,要獲得最佳的飛行時間拓樸型態與高的質量解析度,線性MALDI-TOF MS游離源中的提取長度(s0)與加速區域的長度(d),必須增加至一般質譜儀好幾倍以上,並且與儀器的總長(L)達到特殊比率。這些特殊比率的範圍會隨著m/z不同而有所不同。當m/z越大時,此特殊比率範圍也會隨之縮小。這個研究指出高質量m/z 100,000要達到高質量解析度,則游離源中各區域長度對於總長之特殊比率範圍都必須被嚴格規範(2.33%> s0/L > 1.33%與28% > d/L > 14.33%),然而此實驗參數範圍可以適用m/z 100,000以內任意質量的最佳化。 從這些結果我們首創出高解析度線性MALDI-TOF MS通用原理: 1. 最佳提取延遲必須遵守耦合空間與速度聚焦之條件。2. 相同m/z之離子在不同長度的儀器中要保持相同的最佳質量解析度之數值,則最佳化後提取與加速區域的長度對於儀器總長之比率必須保持不變,提取延遲之大小必須按照此比率延長或者縮短,同時提取電壓範圍之數值也需要保持一樣。這兩個通用原理相較於過往的最佳化方法,能提供更恰當的實驗參數,有效地解決線性飛行時間式質譜儀在高m/z範圍的質量解析度不佳之問題。此聚焦理論可應用於任意m/z離子、任意尺度線性MALDI-TOF MS的最佳化,因此對於高質量解析度質譜儀的開發與應用是具有突破性。Item 以核磁共振研究來理解轉運蛋白之野生型和突變型A97S的結構及動力學差異(2023) 馮于真; Feng, Yu-Chen家族性類澱粉多發性神經病變,是一種具遺傳性的罕見疾病。它是類澱粉沉積症的一種,類澱粉蛋白會影響人體的器官與組織,尤其是心臟及神經病變。嚴重時會導致器官衰竭終至死亡,而對於此疾病目前沒有完全有效的治療方法。轉運蛋白是一種負責運輸甲狀腺素及視黃醇結合蛋白的同源四聚體蛋白,也是家族性類澱粉多發性神經病變的代表性蛋白之一。主要的途徑為此蛋白質的突變型因四聚體結構解離而形成單體,其三級結構會因錯誤折疊而形成類澱粉蛋白。在本研究中,選擇了野生型和A97S突變型進行比較,A97S是台灣病人特有的突變型。透過液態核磁共振光譜儀的分析,來進一步認識兩者之間在結構上以及蛋白質的內部動態的細微變化。發現相較於野生型,A97S突變型中,尤其是在突變的胺基酸位置附近,在蛋白質的結構上的較為明顯的不同,連帶影響到了相鄰的胺基酸。而在動態的分析上,在第97個胺基酸(點突變位置)附近也發現了較為快速的內部動態,所以我們推論出A97S突變型在構型上及內部動力學的差異所帶來影響可能為致病的因素。Item 兩性共聚物: 合成與應用(2022) 劉幸怡; Liu, Xin-Yi本論文研究分為三個主體,這三個主題分別為共聚物分散劑合成應用於氧化石墨烯與環氧樹脂複合材料熱傳性、兩性離子分散劑的合成及應用於砂漿中氧化石墨烯的分散、兩性離子水膠/矽藻土複合材料的合成及應用於砂漿中。第一個主題為合成一種共聚物Poly (GMA-co-Eu),選用甲基丙烯酸缩水甘油酯(Glycidyl methacrylate)和烯丙基甲氧基苯酚(Eugenol)為單體,偶氮二異丁腈(AIBN)為起始劑,經自由基反應利用不同單體比例和起始劑濃度聚合成共聚物分散劑P(GMA/Eu)。經由FTIR及NMR光譜分析確認其化學結構。利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和RAMAN光譜確認。接著探討溶劑、共聚物添加量等對於氧化石墨烯/環氧樹脂(GO/Epoxy)複合材料的熱傳性影響影響。利用SEM觀察氧化石墨烯在環氧樹脂裡的分散性。比較添加不同PGE和PVP,TX100對於氧化石墨烯/環氧樹脂複合材料的熱傳性。實驗結果顯示利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和Raman光譜確認。在合成的5個PGE中,以PGE3 (GMA/Eu=2, Mn=6.7×103)對GO的分散效果最好。在含6% PGE、10wt% GOA的GO/Epoxy複合材料K值為3.32 W/mK,相較於沒有添加分散劑含10wt% GOA的複合材料K值(=2.62 W/mK)提升了26%;在含6% PGE、20wt% GOA的GO/Epoxy複合材料K值為5.02 W/mK,相較於沒有添加分散劑含20wt% GOA的複合材料K值(=2.93 W/mK)提升了71%。添加PVP和TX100,也能促進GO的分散而提升所得GO/Epoxy複合材料的K值。添加相同劑量的5個PGE PGE所得的複合材料的K值都高於添加PVP者,顯示PGE對GO的分散效果優於PVP。第二個主題為合成一種兩性離子型羧酸型共聚物:丙烯醯胺-(1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)) Poly(AM-co-CDP) (PAC),首先使用馬來酸酐和N,N-二甲基-1,3-丙二胺,及氯醋酸鈉反應得到單體1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)(CDP),硫酸銨(APS)為起始劑,與丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物Poly(AM-co-CDP)。使用FTIR和1H-NMR光譜鑑定其結構,利用GPC測定其分子量,將PAC加入含氧化石墨烯的人工孔隙溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗,探討PAC對於人工孔隙溶液中GO的分散效果。將PAC/GO添加在水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度並與商用氧化石墨烯GOB和商用分散劑PC比較。實驗結果顯示: 經由沉降體積、粒徑分布、界達電位和黏度實驗觀察,隨著PAC添加量的增加,GO人工孔隙溶液的黏度漸減,溶液中GO沉降速率減緩、GO粒徑變小、GO界達電位的負值變大,顯示此共聚物確實能促進GO的分散。在合成的PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。相較於商用型羧酸分散劑PC,PAC有更佳的GO分散效果。隨著PAC添加量的增加,含GO的砂漿抗壓/抗彎強度亦增。添加10wt% PAC23、0.05 wt% GOA的28天齡期砂漿試體,有最大的抗壓和抗彎強度、分別為37.2 MPa和7.5 MPa,比未添加氧化石墨烯或分散劑的對照組試體提升了32.3%和111%。相較於PC,PAC更能提升砂漿的機械性質。在合成的數種PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。第三個主題為製備兩種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽藻土為單體,製備PAC和PACD兩種兩性離子型的吸水性水膠,使用FTIR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽藻土含量對於水膠在各種水溶液下吸水率的影響。實驗評估將PACD複合水膠加到水泥砂漿中,作為自養護劑是否合宜,探討水膠和矽藻土量,對於水泥漿中對於水泥砂漿壓強度、內部濕度、乾縮量的影響。實驗結果顯示,PACD複合水膠,當AM/CDP= 4,APS=0.5 mle%,MBA=0.5 mole%,矽藻土15 wt%時的反應條件下,在純水中和孔隙溶液中的最大吸水率分別為362.4 g/g和115.4 g/g。添加矽藻土水膠的砂漿試體的內部濕度高於未添加矽藻土水膠的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的內部濕度隨著添加的PACD水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體內部濕度為最高,其內部濕度到第22天方開始從100%往下降,到第28天的內部濕度仍有78.6%。添加矽藻土的砂漿試體的抗壓強度高於未添加矽藻土的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的抗壓強度隨著添加的PACD複合水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的MD23砂漿試體抗壓強度為最高,在28天齡期的抗壓強度為39.8MPa,比未添加矽藻土的的PAC水膠的試體抗壓強度(34.5 MPa)提升了15%;比無添加水膠的試體抗壓強度(33.1 MPa)提升了20%。添加矽藻土的砂漿試體的乾縮量低於未添加矽藻土的砂漿試體,後者則低於未添加水膠的砂漿試體。砂漿試體的乾縮量隨著添加的PACD水膠所含DE比例增加呈現先下降、達最低值後再上升的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體乾縮量為最低。Item 二維有機-無機混成半導體中的自旋極化光致放光光譜(2023) 江秉益; Jiang, Ping-Yi在本研究中透過合成一系列具備強量子侷限的II-VI族的有機-無機層狀奈米片。奈米片本身為兩個原子厚度的無機層,並將各個無機單層透過雙牙基胺配體以共價鍵互相連接,配體亦可作為介電絕緣層將將電子限制於平面內。吸收光譜中觀察到的吸收出現巨大的藍移以及C3v的對稱性為二維形貌的固有性質。透過摻雜過渡金屬我們在材料中引入與摻雜雜質的自旋-軌道相互作用以及額外的光學活性,在C3v的對稱性下材料理論上會因為簡併性被打破進而產生更大的賽曼分裂,錳本身特殊的自旋躍遷機制以及長半生期的磷光放光都使摻雜錳的寬帶系半導體在低溫下以及在磁場中出現特殊的磁光現象,我們透過與物理系合作嘗試了解這些現象,並透過光學元件的設計,嘗試探討這些現象背後的作用的機制。Item 一價銠金屬催化具高鏡像選擇性之不對稱串聯反應:合成掌性二氫萘胺(2023) 鍾宜庭; Chung, Yi-Ting本論文敘述使用一價銠金屬與掌性雙環[2.2.1]雙烯配體L6a所形成的催化劑,催化𝛽-位具有不同取代基的酯化合物54與不同乙腈芳基硼酯24,進行不對稱串聯合環反應。在最優化條件下,生成一系列具有二氫萘胺結構之環化產物55,共有29個例子,具有最高79%的產率與高達99%的鏡像超越值。此外,以鈀金屬對乙醯基產物58aa的亞胺雙鍵進行氫化反應,可生成具有連續三個掌性中心的產物71,產率、鏡像超越值以及非鏡像異構物比例皆有良好的表現(95% yield, 96% ee, d.r.> 20:1)。Item 以磁場增強鐵磁性複合材料Ti2FeN/Co3O4進行電化學析氧反應(2023) 林柏諺; Lin, Bo-Yan因為科技的進步,人們對能源的需求與日俱增,又因為大多數先進技術依賴於碳基燃料,綠色能源作為化石燃料的潛在替代品得到了廣泛研究。而氧化鈷(Co3O4)這種尖晶石結構(Spinel)的材料應用於析氧反應(Oxygen Evolution Reaction , OER)上是一個新興領域,它能夠有效降低過電位。而MAX phase 這種層狀的六方氮化物或碳化物材料,由於其具有出色的導電性以及不易受到高溫的影響,並且具有出色的抗損壞能力在近年來也被廣泛的研究。我們選用在室溫下具有鐵磁性的 MAX phase 材料 Ti2FeN,並成功的以共沉澱的方式在鹼性環境下製備出Ti2FeN與氧化鈷的複合材料,在探討此材料的析氧反樣過程中,發現了它能有效的提供更多反應的活性位點並能夠增強其電化學性能與降低反應動力學,並且在外加磁場的情況下 更 夠 明 顯 的 降 低 過 電 位 。 在 10mA/cm2 電 流 密 度 所 需 過 電 位(Overpotential)為 390mV,並且其穩定度能夠達到 6 小時之久,表現出其良好的穩定性。Item 胺與氯烯酮反應合成 α-氯烯胺酮的原子經濟策略(2023) 鍾岱儒; Chung, Dai-Ru由於烯胺酮已被廣泛用於製備各種雜環、有機分子和生物學上重要的分子。因此,在有機合成領域中,它非常有吸引力。本論文敘述 (Z)-2-氯-1-苯基-3-(苯氨基)-2-丙烯-1-酮的合成。首先介紹關於烯胺酮衍生物的藥理重要性及合成烯胺酮的文獻回顧。從文獻回顧中發現用二甲基亞碸 (DMSO) 作為溶劑、試劑和氧化劑有廣泛的應用。因此我們嘗試用毒性低、便宜和綠色化學的二甲基亞碸作為綠色氧化劑,經由氧化和氯化反應以原子經濟的方式來生成 α-氯烯胺酮。反應路徑推測是經由胺與氯烯酮進行邁克爾加成反應 (Michael addition) 後,再除去鹽酸得到烯胺酮。