化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 以多尺度計算化學方法理解孔洞材料:以基於MOF-253的催化劑為例(2024) 謝孟錡; HSIEH, Meng-Chi由於大氣中二氧化碳濃度提升,造成全球性的環境變遷,並影響生物生存,目前科學界對於解決此問題具有急迫性。金屬有機骨架作為孔洞性材料,具有好的儲存氣體的能力。 MOF-253 經證實對於二氧化碳有很好的吸附能力。本論文旨在通過應用多尺度模擬來加速設計、篩選後修飾合成後的 MOF-253,作為催化中心。目的有四:設計空間尺度由下到上的篩選策略、設計時間尺度由上到下的篩選策略、設計適用於金屬有機骨架材料的模型、推測在此類材料上的反應路徑。第一章詳細敘述本研究的研究背景、動機與架構。第二章說明實驗方法以及用於模擬實驗的理論。第三章說明空間尺度由下到上的篩選模式的實驗設計與研究結果。第四章說明時間尺度由上到下的篩選模式的實驗設計與研究結果。第五章總結本研究的成果並說明未來的展望。透過本研究,提出了三個可行的單金屬反應中心作為活化的催化劑,並且提出了另一種可能的金屬雙體反應中心形式可以做為催化中心。同時,也說明了對應這些催化中心的反應機制。此外,也提出了在金屬有機骨架材料中,連接體旋轉的影響因素與帶來的影響。期許本研究能對於孔洞材料的相關研究發展有所助益。Item 掌性鈣鈦礦奈米晶體進行光催化二氧化碳還原反應之探討(2023) 曾薇妮; Tseng, Wei-Ni鹵化鈣鈦礦由於具備優異的光電性質,在光學元件的應用上獲得相當不錯的成就,在催化領域中,藉由自旋極化電子的導入,除了能有效分離電荷外,也能抑制電荷複合以提升催化表現。本篇研究透過結合掌性分子及鈣鈦礦材料製備出具有2D/3D混合結構的掌性鈣鈦礦奈米晶體,並利用其作為能形成自旋極化電子的光觸媒材料,以提高光催化二氧化碳還原反應表現。首先進行CsPbBr3 奈米片(NPLs)及掌性分子鹽類MBA:Br的合成,並進行光學及結構分析。將CsPbBr3 NPLs利用MBA:Br修飾後,透過粉末X光繞射、吸收及光致發光光譜確認其結構及光學性質,再透過圓二色及圓偏振螢光光譜確認MBA:Br成功接上CsPbBr3 NPLs。由於自旋極化電子的產生, 2D/3D混合結構的掌性鈣鈦礦奈米晶體能有效提升催化表現,以反應主產物一氧化碳(CO)而言,產率自14.8 μmol g-1分別提升至39.2及26.8 μmol g-1,掌性鈣鈦礦材料在外加磁場(0.3T)的幫助下,CO產率更是分別提升到75.3及48.2 μmol g-1。另外藉由透過磁性圓二色光譜及時間解析螢光光譜探討磁場對於反應機制的影響,證實外加磁場能有效增強自旋極化及延長載流子生命週期並提升催化表現。Item 電化學二氧化碳還原反應在銅錫雙金屬奈米觸媒上的反應機制研究(2023) 林儀美; Lin, Yi-Mei將溫室氣體二氧化碳,轉化為有價值化學燃料的電化學二氧化碳還原反應(CO2RR),已被研究許久且被證實可以有效解決溫室效應與能源短缺等問題。本篇論文中以油胺油酸法合成了CuSn雙金屬奈米觸媒,用於CO2RR中來提升效能及選擇性,並藉由能量散射光譜儀(EDX)及X光繞射儀(XRD)進行觸媒鑑定、X光光電子光譜儀(XPS)及循環伏安法(CV)推測觸媒結構、電化學分析儀及氣象層析儀(GC)測定觸媒效能。透過調整前驅物比例,我們觀測到隨著Sn的比例上升,CO的選擇性呈現先高後低的趨勢,Cu24Sn1具有最高的CO選擇性,其法拉第效率在電位-0.7 V (vs RHE)下達78.83%,電流密度為1.37 mA/cm2;而CH4的選擇性則相反,呈現先低後高的趨勢,Cu1Sn2具有最高CH4選擇性,其法拉第效率在電位-0.7 V (vs RHE)下達88.88%,電流密度為0.86 mA/cm2。透過調整CuSn比例,可以對*CO中間體的吸附能產生影響,進而改變CO2RR的選擇性。Item 鐵電材料CuInP2S6光催化二氧化碳還原反應探討(2022) 林承翰; Lin, Cheng-Han隨著全世界工業蓬勃發展,二氧化碳排放造成氣候變遷已經成為一個不可忽視的議題,各國商討出的碳稅方案還不足以平衡日趨提升的全世界二氧化碳排放量,因此若能將結構穩定,不易分解的二氧化碳有效回收再製成其他有經濟價值的產物或許可以改善目前的窘況,而透過哪些特定材料並且能夠利用太陽光有效催化還原二氧化碳是目前很熱門的研究。在本研究中利用CuInP2S6作為光觸媒探討光催化二氧化碳還原反應。CuInP2S6是一種過渡金屬含磷硫族化物,作為二維材料家族,具有很多吸引人的特性,包括二維凡德瓦層狀結構、雙金屬活性位點、寬的吸收光波長範圍、鐵電性等,在本研究中我們探討了這些性質為此材料帶來高效的光催化展現以及獨特的烴類選擇性(一氧化碳:10.02 μmol g-1,甲烷:28.04 μmol g-1),除此之外,本研究也在CuInP2S6中引入硫缺陷來探討缺陷工程導致電子特性改變的特質,並透過外加磁場產生的耦合作用改變電子自旋提升光生載子分離率,最終達到75.3 μmol g-1的高甲烷產率。Item 利用密度泛函理論計算方法探討二氧化碳還原反應在銅與金銀鋅合金及銅氧化物的催化反應機制(2021) 陳安潔; Chen, An-Jie化石燃料的過度使用導致二氧化碳含量不斷上升,危害了我們的環境及改變我們的氣候,因此有效地降低及利用二氧化碳是刻不容緩的議題。本篇研究我們將藉由密度泛函理論計算方法系統性地探討二氧化碳還原反應在以銅為基底之電催化劑其催化反應機制。在本篇研究的第一部分,我們探討了二氧化碳還原反應在銅金合金、銅銀合金以及銅鋅合金等雙金屬催化劑生成一氧化碳的反應機制。結果顯示透過應變效應及配位基效應的作用下,可以改變重要中間產物COOH、CO及H的吸附能,進而改變反應催化效果。在這些雙金屬催化劑之中,銅金合金能有效地提升COOH吸附能及降低CO及H的吸附能,提升二氧化碳還原反應及降低產氫反應的進行,且透過相同機制,我們發現銅銀鋅三元合金比二元合金又能有更好的催化效果。在本篇研究的第二部分,我們則是探討二氧化碳還原反應在以氧修飾之銅催化劑利用碳碳耦合形成二碳產物之反應機制。我們在此詳細地探討二氧化碳還原形成OCCHO中間產物在純銅(111)表面,以及當含有表面氧或含有次表面氧的銅表面之可能反應的路徑。結果顯示次表面氧的加入可以有效地提升反應的活性,然而表面氧反而會降低反應活性,其提升或降低催化活性的主要原因為表面銅價態的改變所造成。Item 摻雜錳全無機鈣鈦礦奈米晶體透過磁場增強光催化二氧化碳還原反應效率(2021) 林鑫蓉; Lin, Shin-Rung光催化二氧化碳還原不僅可以減少二氧化碳排放,還可以將二氧化碳轉化為高附加值的燃料(如:CO、CH4),因此,發展一種有效的光催化系統來還原二氧化碳是必要的。具有獨特光電特性(如:高吸收係數、高電荷載流子遷移率、能降低光生電子-電洞對複合率的長電荷擴散長度)的鈣鈦礦光催化劑出現,為高效光催化CO2還原帶來了新的機遇。本篇研究合成CsPbBr3 NPs與摻雜錳CsPbBr3 NPs進行光催化二氧化碳還原反應並透過磁場增強來比較催化效果。摻雜錳離子不僅可以提升材料穩定性還具有磁性特質,主要藉由錳離子的微磁性與外加磁場結合來增強催化反應,使得半導體材料被激發後電荷更有效的分離,來提升光催化二氧化碳還原的效率。本實驗中,先對CsPbBr3 NPs與摻雜錳CsPbBr3 NPs進行光學性質、晶體結構、磁場、形貌等分析,再利用氣相層析儀做光催化分析。最後發現摻雜錳CsPbBr3 NPs在具有外加磁場的情況下,光催化二氧化碳還原出來的CO比無外加磁場的效率多出2倍;皆具有外加磁場時,摻雜錳CsPbBr3 NPs比純的CsPbBr3 NPs還原出5倍的CO及2倍的CH4產率。摻雜錳CsPbBr3 NPs在有外加磁場的光催化二氧化碳還原反應下,促進電荷載流子分離來提高光催化性能有了極大進展。Item 碳支撐銅錫奈米觸媒於電化學二氧化碳還原反應效能之研究(2021) 黃凱琳; Huang, Kai-Lin電化學二氧化碳還原反應(CO2RR)為將二氧化碳轉化為有價值的化學燃料和解決全球暖化提供了有效的方法。本研究針對優化銅錫奈米觸媒以獲得最佳的CO2RR效能。以油胺法製備銅錫奈米觸媒並利用能量散射光譜儀(EDS)、感應耦合電漿質譜分析儀(ICP-MS)、X光繞射分析儀(XRD)、X光光電子光譜(XPS)做觸媒特性鑑定。電催化性能藉由電流密度和主要產物一氧化碳法拉第效率來檢驗。透過調整適當銅錫比例來優化銅錫奈米觸媒的化學性質;Cu98Sn2/C在-0.7 V (vs. RHE)下表現出54.0%一氧化碳法拉第效率的最佳活性。觸媒結構的物理性質受合成溫度控制;於493 K下合成出均勻分散在表面的銅和錫,在-0.8 V (vs. RHE)下有最高的一氧化碳法拉第效率88.6%。此外,對兩種錫前驅物做比較發現在油胺法中使用二水氯化亞錫於合成上是更好的選擇。Item 原位光導技術量測二硫化鉬極致薄膜材料於二氧化碳光催化還原反應的應用(2021) 柯尚緯; Ke, Shawn-Wei本篇論文主要探討使用熱蒸鍍與化學氣相成沉積法合成的三奈米半導體薄膜材料二硫化鉬(MoS2)在光催化二氧化碳還原的反應機制,而我們也藉由薄膜材料對環境感測優異的特性,製作光感測裝置並且使用四極式半導體探針體測量儀去觀測光電導在光催化反應中變化,來幫助我們更深入反應中電子傳遞機制。在我們所測量光導數據主要所做的差異化實驗有環境變因和波長變因去設計實驗,而在光催化方面我們是採用氣體氣相層析去量測與計算產量,再使用長時間光導測量去比較在不同氣體環境下的數據差異,可以得知在二氧化碳和水氣得環境下確實能使光電流下降,即代表載子被氣體分子吸收還原為可循環利用的有機分子燃料。而在波長上主要是紫外光有最佳的光響應,甚至造成了特殊的巨大持久性光導(GPPC) 性質,藉由上述兩者的數據結合,我們能推導出光激發載子與反應氣體間的電子傳遞機制。為了解釋電子傳遞的行為,從能帶彎曲的兩種模式表面電子聚集(SEA)和表面電子消耗(SED),並且參考了光電導的載子活期和光電流大小等特性,推論出表面電子聚集為本薄膜材料提出一個合理和完善的解釋。本研究為了解電子傳遞效應如何影響材料的催化效率,主要的方法即是生成凡德瓦二維異質材料,藉由生長三奈米二硫化鉬薄膜於單層石墨烯來達到材料之間優異的原子級接觸和特殊傳遞特性,更藉此影響和增進光催化二氧化碳還原產率。Item 利用密度泛函理論計算機理性探討二氧化碳還原反應在金銅合金與金銀合金之催化效果(2020) 王雅甄; Wang, Ya-Chen隨著人類文明快速發展,溫室問題已成為全球關注的重要問題。將二氧化碳轉化為可再生能源,可以緩和溫室效應加劇的速度。在本研究中,我們通過密度泛函理論(DFT)的計算,機理性探討轉化過程的基本反應:二氧化碳還原為一氧化碳。分析機制後發現,中間體COOH*和CO*的吸附以及其對應的吉布斯自由能是控制還原反應的關鍵:COOH*的吸附力更高,吉布斯自由能越低,有利於啟動CO2還原反應; CO*的吸附力越弱,吉布斯自由能越高,代表CO越容易被脫除,以完成整體的還原反應。銅具有前者的優勢,而金和銀具有後者的優勢。因此,期望金銅和金銀合金可以結合兩種金屬的特性,形成有利於COOH *吸附且擁有最佳還原活性的催化劑。合金上的吸附受電子結構和整體效應的影響,我們找出在銅核金殼/金核銅殼/銅核銀殼中的最佳合金比例為:CuAu6,AuCu16和CuAg7其中又以AuCu16最好。Item 氧化還原置換合成三元金屬奈米材料與光催化的應用(2019) 溫洧正; Wen, Wei-Cheng以金奈米雙三角錐(Gold Nanobipyramids, AuNBPs)與金奈米棒(Gold Nanorod, AuNRs)兩種材料在Hexadecyltrimethylammonium chloride(CTAC)環境中將銀離子還原在表面,以至表面生長銀後形成棒狀及塊狀的金/銀-核/殼的結構,接著以銀做為媒介,利用氧化還原電位的差異,將金、鈀、鉑進行對銀的賈法尼置換(Galvanic replacement reaction),並研究各材料與各金屬之間置換後在構型上的差異及光譜上的變化。由於實驗所使用的三價金與四價鉑皆為高價數金屬,導致大量的銀被置換後只能換上少量的金及鉑,進而使其外部構型不甚堅固,因此實驗中我們利用Sodium oleate(NaOL) 先將三價的金先行還原成一價的金,再與二價的鉑一同進行不同價數的相同金屬對同一材料進行置換,讓等量的銀可以置換上較多的金及鉑,使其結構達到更加穩固之目的。最後嘗試將此種材料應用在光電催化實驗上,如產氫反應及二氧化碳還原反應。