以多尺度計算化學方法理解孔洞材料:以基於MOF-253的催化劑為例

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

由於大氣中二氧化碳濃度提升,造成全球性的環境變遷,並影響生物生存,目前科學界對於解決此問題具有急迫性。金屬有機骨架作為孔洞性材料,具有好的儲存氣體的能力。 MOF-253 經證實對於二氧化碳有很好的吸附能力。本論文旨在通過應用多尺度模擬來加速設計、篩選後修飾合成後的 MOF-253,作為催化中心。目的有四:設計空間尺度由下到上的篩選策略、設計時間尺度由上到下的篩選策略、設計適用於金屬有機骨架材料的模型、推測在此類材料上的反應路徑。第一章詳細敘述本研究的研究背景、動機與架構。第二章說明實驗方法以及用於模擬實驗的理論。第三章說明空間尺度由下到上的篩選模式的實驗設計與研究結果。第四章說明時間尺度由上到下的篩選模式的實驗設計與研究結果。第五章總結本研究的成果並說明未來的展望。透過本研究,提出了三個可行的單金屬反應中心作為活化的催化劑,並且提出了另一種可能的金屬雙體反應中心形式可以做為催化中心。同時,也說明了對應這些催化中心的反應機制。此外,也提出了在金屬有機骨架材料中,連接體旋轉的影響因素與帶來的影響。期許本研究能對於孔洞材料的相關研究發展有所助益。
Due to the increasing concentration of carbon dioxide in the atmosphere, global environmental changes have been induced, affecting the survival of organisms. The scientific community currently faces an urgent need to address this issue. Metal-organic frameworks (MOFs) are porous materials with excellent gas storage capabilities. MOF-253 has been proven to have a strong adsorption capacity for carbon dioxide. This dissertation aims to accelerate the design, and screening of post-synthetic modification of MOF-253 as a catalytic center by applying multiscale simulations. Here are 4 objectives: to design a bottom-up spatial-scale screening strategy, to design a top-down time-scale screening strategy, to design a model suitable for MOFs, and to predict reaction pathways on such materials.Chapter 1 provides a detailed description of the research background, motivation, and framework. Chapter 2 explains the experimental methods and the theories used for simulations. Chapter 3 describes the bottom-up spatial-scale screening strategy's experimental design and research results. Chapter 4 explains the top-down time-scale screening strategy's experimental design and research results. Chapter 5 summarizes the research findings and discusses prospects. Through this research, three feasible single-metal reaction centers were proposed as activation catalysts, and another possible form of dual-metal reaction center was suggested as a catalytic center. Additionally, the corresponding reaction mechanisms for these catalytic centers were elucidated.Furthermore, the factors influencing the rotation of linkers in metal-organic framework materials and the effects brought by such rotations were also discussed. It is hoped that this research will contribute to the development of related studies on porous materials.

Description

Keywords

計算化學, 金屬有機骨架材料, 多尺度, 催化, 二氧化碳還原反應, Computational chemistry, Metal-organic frameworks, Multiscale, Catalysis, CO2 reduction reaction

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By