化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用
    (2007) 蔡志鑫; Chih-Hsin Tsai
    本研究成功的發展了三種新的毛細管電泳分析技術。首先是成功的開拓了LED (發光二極體)在毛細管電泳分析領域的適用性。這是以市售紫光LED (405 nm) 為螢光激發光源,對血壓平(reserpine)及衍生物進行螢光偵測。使用CZE-stacking濃縮技術偵測極限可達1.6 × 10-8 M。若使用sweeping-MEKC (微胞掃集法)及CSEI-sweep-MEKC (陽離子選擇完全注射掃集MEKC法)濃縮技術時,其偵測極限分別可以達到2.1 × 10-9 M及2.1 × 10-10 M。另外藉由NDA (naphthalene-2,3-dicarboxaldehyde)做為螢光標識試劑,與多巴胺進行衍生反應以後,以螢光偵測結合MEKC及sweeping-MEKC濃縮技術進行測量,其偵測極限可達6.3 × 10-6 M及3.0 × 10-8 M。 其次,本研究首先發展以低溫-非水相毛細管電泳的新方法。對其光學異構物±3,4-methylenedioxymethamphetamine (±3,4-MDMA)可以獲得良好的分離效果。本文詳細探討各種最佳的電泳條件,包括使用各種不同的低溫槽及毛細管內最佳化的高導電度的緩衝溶液。在CZE模式下偵測極限可以達到4.7 × 10-6 M,再結合低溫/非水相堆積線上濃縮技術(LTB/NACZE-stacking),偵測極限更可以達到5.0 × 10-9 M。此外為了增加樣品進樣量以及能夠有更窄的樣品區帶,在樣品區帶和電泳背景溶液之間加入一段高導區帶,造成溶液之間有不同的導電梯度,使得樣品進樣量相對增加。利用這些技術,亦成功的應用在真實樣品3,4-MDMA的分析上。 最後,本研究對於非螢光性物質的偵測,亦成功的發展出新的方法。傳統上毛細管電泳法對非螢光性物質的偵測方法不外乎使用間接法,或是將非螢光性物質加以螢光衍生劑衍生後加以偵測。本研究選用非螢光性物質孔雀石綠為測試樣品,並以波長532 nm 雷射(Nd:YAG的第二倍頻波)為拉曼激發光源。在孔雀石綠定量分析上,以單光器(有效寬度0.4 nm)以及拉曼波數1616 cm-1作為收光範圍。 在毛細電泳/共振拉曼的模式下,孔雀石綠在CZE和MEKC模式下的偵測極限為1.6 × 10-5 M 和 1.1 × 10-5 M。當結合線上濃縮技術stacking及sweeping時,偵測極限可以達到3.4 × 10-7 M和5.3 × 10-9 M。而在毛細電泳/表面增強拉曼模式下,再結合線上濃縮技術stacking及sweeping,偵測極限甚至可以分別高達到4.4 × 10-8 M和1.1 × 10-9 M。本方法亦有效的應用在真實樣品的偵測上。
  • Item
    利用毛細管紫外光/螢光電泳及紙噴灑技術對六種鹵化安非他命狡詐家濫用藥物的分析研究
    (2012) 李珣; Hsun Lee
    為了規避法律的規範,近幾年來許多毒犯會合成一系列安非他命的衍生物在街頭販售,使得濫用藥物氾濫的情形愈趨嚴重。本篇研究選用鄰、間、對-氯安非他命和鄰、間、對-氟安非他命這六種安非他命濫用藥物當待測樣品。 首先利用毛細管紫外光電泳結合線上掃集濃縮技術,偵測分離六種鹵化安非他命的混合溶液。並利用毛細管螢光電泳偵測安非他命衍生後的唾液真實樣品,衍生方法採取一般暗處靜置衍生和微波加熱衍生兩種方法。由於對-氯安非他命在 2011 年被歸列為第三級毒品,利用筆尖紙噴灑質譜技術(novel nib-assisted paper spray-mass spectrometry, NAPS-MS)以對-氯安非他命當樣品做偵測,分別偵測了標準品以及唾液真實樣品。實驗中有比較四種紙噴灑的材質對於對-氯安非他命的偵測極限,由結果發現,紙噴灑的技術對於安非他命濫用藥物的偵測極限可達 0.1 mg/L 以下。
  • Item
    微波輔助螢光標定毛細管電泳法對安非他命狡詐家濫用藥物的分離與偵測
    (2013) 陳冠甫; Kuan-Fu Chen
    本研究利用微波輔助螢光標定應用於毛細管電泳分析方法,用來分析鄰、間、對-氯安非他命和鄰、間、對-氟安非他命這六種安非他命濫用藥物與 2,5-dimethoxy- 4-ethylthio-phenethylamine(2C-T-2)、2,5-dimethoxy-4-(n)-propylthiophen- ethylamine(2C-T-7)、4-chloro-2,5- dimethoxyphenethylamine(2C-C)、4-bromo-2,5-dimethoxy-phenethylamine(2C-B)及 2,5-dimethoxy-4-iodo- phenethylamine(2C-I)五種 2C 系列的苯乙胺類毒品。利用 FITC(fluorescein isothiocyanate isomer I)當作螢光標記並使用藍光雷射(473 nm)作激發光源進行偵測。在過去使用 FITC 作衍生劑的衍生時間至少需要 20 小時,現今使用微波輔助衍生所需時間約 5 分鐘即可完成。
  • Item
    熱透鏡吸收光譜法在毛細管電泳上的應用
    (2007) 陳男政; Nan-Zheng Chen
    熱透鏡吸收法是利用分析物吸收雷射光而產生折射率上的改變,做為偵測分析物的方法,是一種具有極高靈敏度的分析方法。本研究利用此原理,開發毛細管電泳/熱透鏡吸收偵測法,針對非螢光性奈米粒子(奈米金、奈米鑽石)及非螢光性物質(孔雀石綠、甲醛)進行研究。 奈米鑽石的生物相容性非常好,表面積大而且可吸附許多藥物分子或生物分子,如蛋白質分子等。奈米鑽石的研究,將有可能取代現行在生物醫學實驗上使用螢光染料分子標記蛋白質的方法。但是,目前沒有理想的方法可以用來分離與分析奈米鑽石與其標識物。本研究首先使用不同粒徑的奈米金,進行毛細管電泳/熱透鏡吸收儀器系統的測試。利用奈米金表面微帶負電的特性,順利的分離了平均粒徑為15及70 nm的奈米金粒子。隨後以此系統,亦成功的分離了非螢光性奈米鑽石(平均粒徑35 nm)與吸附了胺基酸(L-Lysine、Glycine、L-(+)-Cysteine)的奈米鑽石。其中,胺基酸與奈米鑽石分別以濃度比10,100,500,900的比例混合後進行電泳分離,實驗發現奈米鑽石可以吸附平均重量比為500倍的胺基酸。 孔雀石綠是一種疑似具有致癌性的三苯甲烷類非螢光性有機染料,經常被拿來做為魚貨類的消毒劑或殺菌劑。一般對於孔雀石綠的檢驗方式以液相層析/紫外光吸收法最為普遍。但是紫外光吸收法的偵測靈敏度較差,不足以應付例行性/低濃度孔雀石綠的檢驗工作。本研究則嘗試選用熱透鏡吸收法進行研究,這是因為該方法的偵測靈敏度可隨著雷射功率的增加而提高。實驗發現,配合毛細管電泳/線上濃縮技術的使用,在最佳化條件之下,偵測下限可達~12 ppb。再者,低濃度的甲醇或甲醛難以使用氣相層析質譜法加以偵測。目前僅能以呈色法做為檢驗甲醇的簡易方法。這是將含有甲醇的溶液(例如脫色後的假酒),加入透明無色的晶紅酸試劑(又名希夫試劑)。經過加熱處理後,可以看見顏色上的變化(若有甲醇會呈紫色)。但是這樣的方法,過於粗糙,誤判機率高。僅能篩選具有高濃度甲醇的假酒,不足以用來做為檢驗日常食品中,是否含有低濃度甲醇或甲醛的方法。本研究則同樣利用毛細管電泳/熱透鏡吸收法,以綠光雷射為光源,針對紫色產物進行分析與研究。實驗結果發現,傳統上的呈色法,其紫色產物並非僅為單一物質。實驗並發現晶紅酸試劑與甲醛的反應複雜,且其產物組成伴隨著反應時間改變而有所不同。此現象可由本研究的電泳圖譜上觀察到多數譜峰而被證明。
  • Item
    以毛細管電泳螢光光譜法對尿液及藥錠中3,4-亞甲雙氧甲基安非他命(3,4-MDMA)及相關濫用藥物光學異構物之分析研究
    (2006) 黃鈺珊; Yu-San Huang
    製備R-(-)-和S-(+)-3,4-MDMA的光學異構物,並以GC-MS鑑認其化學結構與純度之後,以此為標準品,做為毛細管電泳分離分析法時標準添加之用。本研究以毛細管電泳的方式成功分離了R-(-)-和S-(+)-3,4-MDMA及其相關的類似化合物,並探討電泳緩衝溶液中β-CD濃度、有機溶劑比例等電泳,以求得最佳化的分離條件。最後以此做為判定藥錠及尿液中(RS)-MDA和(RS)-MDMA的存在與否的方法,並找出R-(-)-和S-(+)-型藥錠中及尿液代謝物中彼此的相對存在量。 本研究分別比較了水相與非水相毛細管電泳/螢光偵測法在進行光學異構物的分離與在進行線上濃縮時的優缺點,並探討當緩衝溶液中添加不同濃度的ß-CD時,SDS-陰離子界面活性劑與CTAB-陽離子界面活性劑對電泳分離的影響。實驗選用R-(-)-/S-(+)型的MDMA及其相關狡詐家藥物(MDA, DMMDA, MBDB, BDB )做為測試樣品。實驗首先合成並分離了單一型的R-(-)-與S-(+)-MDMA 標準品,經GC/MS及旋光光譜儀鑑定無誤後,做為標準添加之用。電泳分離結果發現,對於水相毛細管電泳在進行光學異構物的分離時發現β-CD與CTAB所組成的溶液(β-CD與SDS所組成的緩衝溶液)對光學異構物的分離效果較佳,可使八種光學異構物達到完全分離的效果。對非水相電泳分離而言,當非水相緩衝溶液使用150 mM CTAB (MeOH:foramide = 7: 3; v/v)時,可使MDA、MDMA、DMMDA、MBDB完全分離。而當非水相緩衝溶液添加150 mM 的β-CD,可使R-(-)-與S-(+)-型等八種光學異構物達到完全分離的效果。實驗並成功鑑定了R-(-)-與S-(+)-MDMA在MDMA藥錠及吸食MDMA者尿液中各異構物存在的比例。此外,當比較水相與非水相毛細管電泳術對線上濃縮技術時發現,以sweeping-MEKC為電泳模式的最佳緩衝溶液條件為SDS 50mM 溶解於含有機修飾劑(MeOH:ACN:H2O = 30 : 7:63 ; v/v/v;pH=2;導電度=4.4ms/cm)的溶液的效果最好。最佳進樣長度為40 cm(毛細管總長87/92cm)時的偵測極限可達1 ppb。但是SDS不適合做為非水相sweeping-MEKC之用;以非水相-stacking的技術,偵測極限仍可達2.6 ×10-8 M。
  • Item
    毛細管電泳/藍光雷射誘導螢光偵測法 對尿液中乳酸及3-羥丁酸之分析研究
    (2013) 洪榮華; Rong-Hua Hong
    乳酸和3-羥丁酸為體內正常有機代謝產物,但是當肝臟疾病或體內脂肪氧化代謝異常時,血液中乳酸和3-羥丁酸就會過度累積,而發生乳酸性中毒和酮酸中毒的現象。由於乳酸和3-羥丁酸僅有極低的紫外光吸收性質,且不容易以電噴灑質譜法進行偵測,而傳統酵素測定法偵測乳酸和3-羥丁酸則容易受到內生性物質的干擾而影響準確性。本研究以毛細管電泳/藍光雷射誘導螢光偵測法,偵測尿液中的乳酸濃度以作為臨床診斷酮酸中毒的參考數據。目前市面上沒有適合的螢光衍生試劑,因此本實驗合成4-N-(4-N-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole作為乳酸和3-羥丁酸的螢光衍生試劑。衍生過程需要使用催化劑TPP (triphenylphosphine) 和DPDS (2,2’-dipyridyl disulfide) 來幫助反應進行。若利用微波輔助衍生,可將衍生反應時間縮短為3分鐘。衍生物結構在低pH值環境下會進行質子化並放出螢光,對於分離乳酸和3-羥丁酸的衍生物而言,利用pH 值小於3的磷酸緩衝液且不需添加有機修飾劑、界面活性劑即可完全分離。當以藍光雷射為螢光激發光源時,最佳偵測條件下,偵測極限約為10 g/L。由於雷射誘導螢光檢驗法的靈敏度高,因此不需要利用線上濃縮技術。本研究選擇的真實樣品為尿液和唾液,其前處理經過去蛋白和稀釋即可進行衍生。檢測結果發現,正常人尿液中的乳酸濃度約為 39 ± 11 mg/L。藉由運動的方式增加醣類代謝和脂肪氧化速度,則尿液中代謝的乳酸濃度增加為231 ± 121 mg/L。進食前唾液樣品中乳酸濃度約為49 ± 16 mg/L,進食後唾液樣品中由於葡萄糖濃度上升增加轉醣酵素的代謝速率,代謝物乳酸濃度上升至192 ± 48 mg/L。本研究提供簡單、快速的分析技術並成功的應用在真實樣品的檢測。