化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    含硒之錳金屬與含碲之鉻金屬羰基團簇化合物之合成、物性、化性與半導體性質之探討
    (2022) 李彩岑; Li, Cai-Cen
    Se−Mn−CO 系統 順磁性含硒之六錳團簇物 [{Se5Mn3(CO)9}2]4‒ [(1)2] 可經由硒粉末和 Mn2(CO)10 在 KOH/MeOH/MeCN 溶液中以 40 oC 一鍋化反應合成。(1)2 可視為由中央 Se‒Se 鍵橋接兩個 [Se5Mn3(CO)9] 片段的二聚體。當合成溫度升至 90 oC 時,發現化合物 (1)2 將熱裂解形成其自由基單體團簇物 [Se5Mn3(CO)9]•2‒ (1),並通過高解析質譜及元素分析得相關證據。基於超導量子干涉裝置 (SQUID) 分析,其結果顯示化合物 [PPN]2[1] 在 300 K 時之有效磁矩 (μeff) 為 3.88 μB,為一四重自旋態 S = 3/2 (quartet spin state) 之物種。值得注意的是,自由基團簇物 1 的 100 K 電子順磁共振 (EPR) 光譜包含 Mn 超精細分裂和 Se 自由基信號,表明 μ-Se 自由基特徵。化合物 1 以高濃度溶於 MeCN 時 Se 自由基可自聚 (self-dimerization) 形成 (1)2,也可以被 (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) 捕獲並形成 TEMPO 加成物,[Se5Mn3(CO)9(TEMPO)]2‒ (1-TEMPO)。有趣的是,在室溫下利用二溴化烷衍生物 (CH2)nBr2 (n = 1, 2) 與 1 和 (1)2 反應可發現不同的反應模式。化合物 1 可形成 CH2 或 Se 片段插入於 Se8Mn4 的順磁團簇物 (S = 1),[(μ4-Se2)(μ-Se2LSe)2Mn4(CO)12]2‒ (L = CH2, 2-CH2; Se, 2-Se),而 (1)2 則形成 Se10Mn6 基底之 (CH2)nBr 官能化逆磁性團簇物 [Se10Mn6(CO)18((CH2)nBr)2]2‒ (n = 1, (1)2-CH2Br; 2, (1)2-(CH2)2Br)。此外,這些高核數 Se‒Mn‒CO 團簇物具有豐富的氧化還原特性並且在固態下呈現 CO 誘導的半導體行為,具低且可調控的光學能隙 (1.50‒1.94 eV)。這罕見的半導體性質主要來自團簇物於固態時具非典型的氫鍵 C‒H (苯基) ···O (羰基) 弱作用力,使其達成有效的電子傳輸。此系列化合物有趣的結構及不尋常的磁性表現可通經由 DFT 計算加以佐證。  Te−Cr−CO 系統 羰基碲化鉻團簇物 [Te7Cr4(CO)14]4‒ (1) 和 [Te7Cr6(CO)20]4‒ (2) 由 TeO2、Cr(CO)6 和 Et4NBr 分別在 1 M 的 KOH/MeOH/MeCN 溶液以45 oC 或 1.5 M 的 KOH/MeOH/n-Hexane 溶液中以 80 oC 一鍋化的方式合成。四鉻化合物 1 由兩個 Cr(CO)3 和兩個 Cr(CO)4 片段通過一個 μ4-η1,η1,η1,η1-Te2 和一個 μ4-η1,η2,η1,η2-Te5 連接,因此化合物 1 可被視為具有兩個 Te4Cr 和四個 Te3Cr2 五員環的三橋接扭曲立方體 (tris-homocubane) 化合物。至於六鉻化合物 2,為四個 Cr(CO)3 和兩個 Cr(CO)4 片段以一個 μ4-η1,η1,η1,η1-Te2、一個 μ6-η1,η1,η1,η1,η1,η1-Te3 和兩個 μ3-η1,η1,η1,-Te 片段連接形成一個籠狀化合物,可視為六個 Te3Cr2 五員環和兩個 Te2Cr2 四環組合而成。這些電子精確 (electron precise) 的化合物 1 和 2 在室溫下表現出不尋常的順磁性 (S = 1),並通過 SQUID、EPR 和 DFT 計算進一步研究。此外,差分脈衝伏安法 (DPV) 顯示化合物 1 和 2 皆具有接近 0 V 的氧化峰,這意味著這些配合物可能具有氧化特性。當化合物 2 與金屬氧化劑 [Cu(MeCN)4]+ 反應時,獲得中等產率嵌入銅的籠形配位化合物 [Cu@Te7Cr6(CO)20]3‒ (Cu@2) 及 [Cu2@Te7Cr6(CO)20]2‒ (Cu2@2)。其中 Cu 原子被嵌在 Te7Cr6 籠狀骨架中,並通過高解析質譜及元素分析檢測得相關證據。此外,藉由 DFT 理論計算進一步研究 Cu@2 的結構、電化學和順磁性質。
  • Item
    不同形貌銅奈米粒子之制備及特性分析與機制探討
    (2008) 莊創年
    當物體大小達奈米等級後其性質會有相當大的變化,使得其物理或 化學性質與巨觀時有些不同,奈米顆粒的大小與形狀對這些性質有很強 的影響,因此在近幾年來引起許多學者專家的注意。其中由於銅具有良 好的導電率(electrical conductive)、熱傳導(thermal conducting)和絕佳的 觸媒特性(catalytic),價格又相對便宜,因此受到廣泛的研究。要合成出 穩定、分散性好,且具有單一形狀的銅奈米粒子是很困難的,主要是因 為銅非常容易氧化。 在本篇論文中我們利用有機化學還原法合成法,並藉由改變界面活 性劑合成出多面體(cuboctahedral)、方形與柱狀三種銅奈米粒子,而方 形與柱狀的產率為 85.54%、34.20%,多面體則是接近百分之百。藉由 SEM、TEM、XRD、XPS與UV-Vis分析儀器來鑑定其組成結構。從實驗 結果可以得知在控制形狀的反應機制中界面活性劑HDA可以選擇性的 還原出單一晶種,TOPO則是可以選擇性的吸附在晶種的(100)面上,藉 此合成出高產率的方形結構。最後由TPR的結果可以得知,我們所合成 的銅奈米粒子在活性上具有不錯的穩定性。
  • Item
    含銻及硫之過渡金屬 (鉻、鐵、銅) 團簇化合物的合成、轉換關係、化性、物性與理論計算之探討
    (2016) 孫子硯; Sun, Zih-Yan
    Sb‒Cr 系統 當含氫配子之四面體化合物 [HSb{Cr(CO)5}3]2‒ (1-H) 與 HBF4 進行反應,可形成不飽和平面三角形化合物 [Sb{Cr(CO)5}3]‒ (1),並伴隨氫氣的產生。有趣的是,利用液態紫外/可見光光譜得知,化合物 1 具有溶劑化顯色特性。將 1 與親核試劑 KX (X = F, Cl, Br, I, OH)、MeLi、NaBH4 反應,可得一系列路易士加成物 [YSb{Cr(CO)5}3]2‒ (Y = F, 1-F; Cl, 1-Cl; Br, 1-Br; I, 1-I; OH, 1-OH; Me, 1-Me; H, 1-H)。此外,當 1 與有機金屬試劑 [HFe(CO)4]‒ 反應,則可得一 [Fe(CO)4]2‒ 片段取代之含氫配子四面體混合鉻鐵化合物 [HSb{Cr(CO)5}2{Fe(CO)4}]2‒ (2-H)。再者,當 2-H 進行去質子化反應時,可形成不飽和平面三角形化合物 [Sb{Cr(CO)5}2{Fe(CO)4}]‒ (2) 與雙 [Fe(CO)4]2‒ 片段橋接兩個 Sb 之混合鉻鐵產物 [HOSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (3)。最後,藉由電化學、液態以及固態反射式紫外/可見光光譜與 X-ray 吸收近邊緣結構光譜 (XANES),並搭配理論計算來探討此系列化合物之合成、氧化還原行為、光學性質與電子結構特性。 S‒Fe‒Cu 系統 利用 [SFe3(CO)9Cu2(MeCN)2] (1) 與含氮配子 4,4’-dipyridine (dpy)、1,2-bis(4-dipyridyl)ethane (bpea)、4,4’-trimethylenedipyridine (bpp) 進行溶劑輔助研磨 (liquid-assisted grinding, LAG) 反應,可計量形成一系列混合鐵銅羰基之新穎一維聚合物 [SFe3(CO)9Cu2(dpy)3]n (3) 和 [SFe3(CO)9Cu2(bpea)]n (4) 及二維聚合物 [SFe3(CO)9Cu2(MeCN)(dpy)1.5]n (2)、[SFe3(CO)9Cu2(bpea)2]n (5) 與 [SFe3(CO)9Cu2(bpp)2]n (6)。藉由固態反射式光譜可得知此系列聚合物其能隙範圍為 1.44‒1.80 eV,皆具有半導體性質。另外,此系列 S‒Fe‒Cu 聚合物之合成、轉換關係及 Cu 金屬氧化態則藉由 X 光粉末繞射儀 (PXRD)、高解析 X 光電子能譜 (XPS) 與 X 光吸收近邊緣結構光譜 (XANES) 進一步驗證。
  • Item
    利用微生物 MerR 家族與二元調節系統設計銅離子生物感測器
    (2016) 陳姵璇; Chen, Pei-Hsuan
    本研究使用微生物抵抗銅離子的調控系統,利用基因重組技術設計量測銅離子的全細胞生物感測器。本研究分別使用青枯桿菌 (Ralstonia eutropha) 中屬於 MerR 家族的 cue 基因調控組,以及耐金屬貪銅菌 (Cupriavidus metallidurans) 中屬於二元調節系統的 cop 基因調控組,以紅色螢光蛋白作為訊號輸出的報導基因來建構質體,設計出不同的銅離子生物感測器。其中,cueR 生物感測器除了能夠量測銅離子之外,在適當的前處理下還能分別量測銀離子與金離子。根據世界衛生組織所公布的飲用水水質準則,飲用水中銅離子的含量不得超過 2 mg/L (31 μM),本研究所設計的 cueR 生物感測器以耐金屬貪銅菌作為質體之宿主時,量測銅離子的最低偵測極限為 25.54 μM,能夠量測飲用水中銅離子是否超標。而在 copSR 生物感測器的實驗中,嘗試使用不同的 cop 啟動子,建構出多種 copSR 生物感測器。也嘗試表現紫茉莉的 4,5-多巴雙加氧酶 (DOPA 4,5-Dioxygenase of Mirabilis jalapa, MjDOD),透過添加 L-多巴 (L-3,4-dihydroxyphenylalanine, L-DOPA) 催化產生出甜菜黃色素 (betaxanthin),以色素的生成作為輸出訊號,進而縮短檢測時間。此外,我們嘗試在不同來源的水樣品中額外添加銅離子進行量測,證明本研究設計的 copSR 生物感測器不會受到水中其他雜質干擾而影響銅離子量測。本研究設計出多種銅離子生物感測器,隨著每種生物感測器偵測範圍不同,可望運用在不同的需求上。