化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    導電高分子與氮化鎵奈米線應用於光伏效應之研究
    (2009) 陳柏村
    我們企圖使用奈米管、奈米線或是奈米柱和共軛高分子混摻用來製作有機/無機混摻太陽能電池藉以提高電子在材料上的遷移率及電荷收集效率。我們將Thermal-CVD成長的氮化鎵奈米線和具規則性的聚3-己烷噻吩(P3HT)混摻置成薄膜,從拉曼光譜中我們看見氮化鎵奈米線和聚3-己烷噻吩 (P3HT) 在表面上可能有作用而使得聚3-己烷噻吩(P3HT)的特徵峰值及強度改變,另外在室溫的光激螢光光譜中可以看峰值紅移,可能是因為氮化鎵奈米線表面的孤對電子推擠聚3-己烷噻吩(P3HT)上的π電子及硫上的孤對電子造成聚3-己烷噻吩(P3HT)的排列較鬆散所致。我們設計氮化鎵奈米線混摻聚3-己烷噻吩(P3HT)的有機/無機太陽能電池其元件表現會受到濃度、膜厚及退火等影響,目前效率大約0.015%、開路電壓約為950mV、短路電流約為0.05 mA/cm2。
  • Item
    以X光吸收光譜分析燃料電池陰極觸媒PtxRh1-x之表面組成與電化學催化特性暨以CuInS2、CdS、ZnO之奈米晶體製備全無機薄膜太陽能電池
    (2009) 張睿中; Chang Jui-Chung
    本篇同時針對燃料電池陰極觸媒PtRh以及以CIS、ZnO、CdS等全無機材料製成的薄膜太陽能電池,提出研究。 作為陰極觸媒的PtRh是一種比純Pt有更好催化效果的合金材料,此外,由實驗結果,我們發現它有更佳的甲醇耐性。我們利用液相合成法,並且利用CV、LSV等方式觀察甲醇催化及氧氣還原反應等反應之電化學數據,此外,我們佐以XRD、TEM與XAS等儀器分析材料結構,並以XAS中的EXAFS數據分析結構及表面組成。催化方面,以PtRh31催化效果最好,並且同時展現最佳的甲醇耐性,為這系列觸媒中最為理想的。 II-IV族半導體在文獻中被廣泛討論,而我們所選用的CuInS2即為一種低毒性的II-IV族半導體。我們利用液相合成的CIS作為吸收層,並且在其下層疊CdS層以及ZnO層,最後則為ITO玻璃的多層構造,製作出全無機薄膜太陽能電池。無機太陽能電池比起有機太陽能電池更為耐用,是未來太陽能電池發展的趨勢。我們利用了UV-Vis、IR等光譜儀器測量其光譜性質,並且以SEM分析其結構分層。最後,我們自行製作的全無機太陽能電池元件,在經過鍛燒除去有機物之後,在AM1.5G的模擬光源下,其光電轉換效率為0.088%。
  • Item
    染料敏化太陽能電池之釕化合物
    (2009) 陳日新
    本研究利用Wittig-Horner reaction以及Suzuki coupling,合成出2,2'-bipyridine衍生之配位子:包括引入2-或3-位置取代carbazole,以及fluorene單元之化合物,並以之合成一系列Grätzel-型釕金屬光敏化染料。本系列釕金屬染料的UV吸收光譜在530~550 nm範圍可觀測得金屬→配位子之電荷轉移吸收(metal-to-ligand charge-transfer),當在bipyridine和carbazole、fluorene中間引入雙鍵後,由於有效共軛長度之增加,使吸收峰的波長有明顯的紅位移。以這些釕金屬染料為光敏劑製成染料敏化太陽能電池(dye-sensitized solar cells, DSSCs) ,展現不錯的光電轉換效率。其中染料Ru-vinyl-fluorene有最好的元件效率,參數為:光電轉換效率η = 4.90%;開環電壓Voc = 0.63 V;短路電流Jsc = 11.14 mA/cm2;填充因子FF = 0.70。其光電轉換效率,可達到在相同的條件下製作與量測,以Grätzel染料N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) bis-tetrabutylammonium) 製成標準元件 (η=7.11%) 的69%。推測較佳的光收成與染料之吸附度導致Ru-vinyl-fluorene元件有較高的效率。
  • Item
    以呋喃衍生物為材料的光敏染料太陽能電池
    (2008) 陳品誠
    摘要 本論文利用Suzuki coupling、Stille coupling、Buchwald-Hartwig C-N coupling 和Wittig reation,合成出一系列新穎有機光敏染料 (metal-free organic dyes)。這些雙極性化合物以arylamine為供電子基團,2-cyanoacrylic acid為拉電子基團,兩者之間的共軛鏈則是由呋喃 (furan) 搭配苯 (phenyl)、噻吩 (thiophene) 等芳香雜環或烯基組成。 以上化合物的吸收波長(λabs)約在461 ~ 485 nm之間,較類似結構的噻吩衍生物 (λabs = 404 ~ 445 nm) 紅位移了約40 ~ 57 nm。以上化合物可用為光敏染料,製成高效性的染料敏化太陽能電池 (dye-sensitized solar cells, DSSCs)。其中最好的元件效率參數為:光電轉換效率η = 7.36%;開環電壓Voc = 0.69 V;短路電流Jsc = 16.59 mA/cm2;填充因子FF = 0.64。其光電轉換效率在相同條件下,可達以N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)- ruthenium (II) bis-tetrabutylammonium) 製成標準元件 (η= 7.69) 的96 %。
  • Item
    結合二硫化鐵奈米晶體與聚(3-己基塞吩)、[6,6]苯基富勒烯丁酸甲酯之無機/有機及與氧化鋅奈米晶體之全無機混掺光電元件應用
    (2008) 黃國賓
    摘要 二硫化鐵(FeS2),能隙0.95eV之半導體,具有高吸光性,製備容易且地球含量豐富,其塊材(黃鐵礦)早期亦作為太陽能電池之材料。,在本論文中以溶液法製備花形FeS2奈米粒子,以及FeS2混掺過渡元素銅、鎳及鈷之奈米粒子,並利用其製作各種光電元件:(1) FeS2奈米粒子與氧化鋅(ZnO)奈米柱混掺之全無機太陽能電池,其中ZnO亦為熱門之光電元件材料,且有機高分子與無機材料相比,其使用壽命是個不小挑戰,因此全無機太陽能電池應為往後之趨勢。FeS2及ZnO均無污染無毒,對地球並無負擔,在環保意識高漲的今日,不失為一種環境接受性良好之綠色材料; (2) FeS2、P3HT與PCBM之無機奈米粒子/有機高分子混掺太陽電池,期望加入FeS2奈米粒子後,正好能補足紅光區之吸收,達成全日光波長均能轉換為電能之目標,在AM1.5G的模擬光源下,其開路電壓提高為0.5V,短路電流提高為6.1mA;(3) FeS2與P3HT之無機奈米粒子/有機高分子混掺太陽電池,經改善FeS2在氯仿中分散度後,並全程在乾燥箱內製造元件,在AM1.5G的模擬光源下,其光電轉換效率可達0.139%。
  • Item
    高中生STS模組教學與批判思考意向的探討
    (2007) 黃博成
    本研究的目的是結合課本中的教材與時下社會的熱門議題,開發設計『醣』與『太陽能』兩套STS模組課程,並藉由蒐集、分析數據,來探討學生在相關概念及學習上的成效,以及STS模組教學對於高一學生『批判思考意向』的影響。本研究之對象為台北市某高中一年級的學生,共八十人。 研究結果如下: 1. 在STS模組教學活動後,學生的知識層面有明顯成長。使用『醣』模組之X班級其科學概念前、後測分數差異達13.1分;使用『太陽能』模組之Y班級其科學概念前、後測分數差異達11.8分。針對平均值差異進行t檢定結果發現均達顯著值(p<0.05),說明模組活動對學生知識層面的確有影響。 2. 學生在『批判思考意向量表』之平均得分主要集中在3.51-4.00、4.00-4.50、4.51-5.00、5.00-5.50三個區間,而樣本中『批判思考意向』分數極高(5.51-6.00)和較低(2.00-2.51)的人數並不多,整體約略呈常態分佈,且超過一半的學生『對科學的態度』之平均得分比期望值高。 3. 學生『對批判思考的意向』和接受兩個模組教學後之成就測驗成績的相關係數分別是0.156及0.438,顯示有相關性。同時分析系統性與分析力、心胸開放、智識好奇心、整體與反省思考四個維度與接受模組教學後之成就測驗成績的相關顯著值亦均大於0.05,顯示沒有顯著的相關性,表示接受模組教學後之成就測驗成績與四個維度沒有顯著的相關性。 4. 大部分學生對本次教學活動抱持正面態度,包括認為這種教學很有趣、覺得這種上課方式比只聽老師講解課本內容更好,也希望下次教師還能使用類似教學模組的方式進行教學。
  • Item
    有機共軛酸在太陽能電池染料的應用
    (2006) 陳冠甫
    中文摘要 在本篇論文中,我們研發以有機共軛酸當作主要骨架的有機化合物染料4-(4-二甲胺苯)1,3-環己二烯羧酸 (5)、4-(4-二苯胺苯)1,3-環己二烯羧酸 (10)和4-(4-(9H-咔唑基)苯)1,3-環己二烯羧酸 (15)來當作染料敏化太陽能電池的材料,並測試、探討其物理性質,以作為將來發展類似結構時的依據。在這些合成的有機化合物染料結構中,均包含了環己二烯(1,3-cyclohexdiene)的架構,這可使整個結構的穩定度大幅提高。 在物理性質方面,我們測試化合物(5、10、15)其個別的吸收光譜、螢光激發光譜和電化學性質。同時也將其製作成元件(染料敏化太陽能電池),利用太陽光模擬及特定波長光束輸出系統進行光電轉換效率(η)與單色光轉換效率(IPCE)的測試。