化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item On-chip Fabrication of Well-aligned and Contact-barrier-free GaN Nanobridge Devices with Ultrahigh Photocurrent Responsivity(Wiley-VCH Verlag, 2008-07-01) R.-S. Chen; S.-W. Wang; Z.-H. Lan; J. T.-H. Tsai; C.-T. Wu; L.-C. Chen; K.-H. Chen; Y.-S. Huang; Chia-Chun ChenBuilding nanobridges: Direct integration of an ensemble of GaN nanowires (n) onto a microchip produces a viable nanobridge (NB) device with good alignment and contact performance, the design of which demonstrates the potential of nanowires for sensor development. These GaN NBs have strong surface-enhanced photoconductivity with ultrahigh responsivityItem High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment(American Institute of Physics (AIP), 2008-03-17) C.-L. Hsiao; T.-W. Liu; C.-T. Wu; H.-C. Hsu; G.-M. Hsu; L.-C. Chen; W.-Y. Shiao; C.-C. Yang; A. Gaellstroem; P.-O. Holtz; Chia-Chun Chen; K.-H. ChenHigh-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors.Item Enhanced Emission of (In, Ga) Nitride Nanowires Embedded with Self-assembled Quantum Dots(Wiley-VCH Verlag, 2008-03-25) C.-W. Hsu; A. Ganguly; C.-H. Liang; Y.-T. Hung; C.-T. Wu; G.-M. Hsu; Y.-F. Chen; Chia-Chun Chen; K.-H. Chen; L.-C. ChenWe report the structure and emission properties of ternary (In,Ga)N nanowires (NWs) embedded with self-assembled quantum dots (SAQDs). InGaN NWs are fabricated by the reaction of In, Ga and NH3 via a vapor–liquid–solid (VLS) mechanism, using Au as the catalyst. By simply varying the growth temperature, In-rich or Ga-rich ternary NWs have been produced. X-ray diffraction, Raman studies and transmission electron microscopy reveal a phase-separated microstructure wherein the isovalent heteroatoms are self-aggregated, forming SAQDs embedded in NWs. The SAQDs are observed to dominate the emission behavior of both In-rich and Ga-rich NWs. Temperature-dependent photoluminescence (PL) measurements indicate relaxation of excited electrons from the matrix of the Ga-rich NWs to their embedded SAQDs. A multi-level band schema is proposed for the case of In-rich NWs, which showed an anomalous enhancement in the PL peak intensity with increasing temperature accompanies with red shift in its peak position.Item Self-Regulating and Diameter-Selective Growth of GaN Nanowires(IOP Publishing, 2006-06-14) C.-K. Kuo; C.-W. Hsu; C.-T. Wu; Z.-H. Lan; C.-Y. Mou; Y.-J. Yang; Chia-Chun Chen; K.-H. ChenWe report diameter-selective growth of GaN nanowires (NWs) by using mono-dispersed Au nanoparticles (NPs) on a ligand-modified Si substrate. The thiol-terminal silane was found to be effective in producing well-dispersed Au NPs in low density on Si substrates so that the agglomeration of Au NPs during growth could be avoided. The resultant GaN NWs exhibited a narrow diameter distribution and their mean diameter was always larger than, while keeping a deterministic relation with, the size of the Au NPs from which they were grown. A self-regulating steady growth model is proposed to account for the size-control process.Item Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates(Wiley-VCH Verlag, 2004-03-01) Z.-H. Lan; C.-H. Liang; C.-W. Hsu; C.-T. Wu; H.-M. Lin; S. Dhara; K.-H. Chen; L.-C. Chen; Chia-Chun ChenThe formation of homojunctions and heterojunctions on two-dimensional (2D) substrates plays a key role in the device performance of thin films. Accelerating the progress of device fabrication in nanowires (NWs) also necessitates a similar understanding in the one-dimensional (1D) system. Nanohomojunction (GaN on GaN) and nanoheterojunction (InN on GaN) nanorods (NRs) were formed in a two-step growth process by a vapor–liquid–solid (VLS) mechanism. Ga2O3 nanoribbons were formed using Ni as catalyst in a chemical vapor deposition (CVD) technique and then completely converted to GaN NWs with NH3 as reactant gas. An Au catalyst is used in the second step of the VLS process to grow GaN and InN NRs on GaN NWs using CVD techniques. A morphological study showed the formation of nanobrushes with different structural symmetries and sub-symmetries in both homogeneous and heterogeneous systems. Structural characterizations showed nearly defect-free growth of nanohomojunction (GaN) and nanoheterojunction (InN) NRs on 1D GaN NW substrates.Item Blueshift of yellow luminescence band in self-ion-implanted n-GaN nanowire(American Institute of Physics (AIP), 2004-05-03) S. Dhara; A Datta; C.-T. Wu; Z.-H. Lan; K.-H. Chen; Y. -L. Wang; Y.-F. Chen; C.-W. Hsu; L.-C. Chen; H.-M. Lin; Chia-Chun ChenOptical photoluminescence studies are performed in self-ion (Ga+)-implanted nominally dopedn-GaNnanowires. A 50 keV Ga+focused ion beam in the fluence range of 1×1014–2×1016 ions cm−2 is used for the irradiation process. A blueshift is observed for the yellow luminescence (YL) band with increasing fluence. Donor–acceptor pair model with emission involving shallow donor introduced by point-defect clusters related to nitrogen vacancies and probable deep acceptor created by gallium interstitial clusters is responsible for the shift. High-temperature annealing in nitrogen ambient restores the peak position of YL band by removing nitrogen vacancies.Item Hexagonal-to-Cubic Phase Transformation in GaN Nanowires by Ga+ Implantation(American Institute of Physics (AIP), 2004-06-28) S. Dahara; A. Datta; C.-T. Wu; Z.-H. Lan; K.-H. Chen; Y. -L. Wang; C.-W. Hsu; C.-H. Shen; L.-C. Chen; Chia-Chun ChenHexagonal to cubic phase transformation is studied in focused ion beam assisted Ga+-implanted GaNnanowires. Optical photoluminescence and cathodoluminescence studies along with high-resolution transmission electron microscopic structural studies are performed to confirm the phase transformation. In one possibility, sufficient accumulation of Ga from the implanted source might have reduced the surface energy and simultaneously stabilized the cubic phase. Another potential reason may be that the fluctuations in the short-range order induced by enhanced dynamic annealing (defect annihilation) with the irradiation process stabilize the cubic phase and cause the phase transformation.Item Characterization of Nanodome on GaN Nanowires Formed with Ga Ion Irradiation(Nihon Kinzoku Gakkai, 2004-01-01) S. Muto; S. Dahara; A. Datta; C.-W. Hsu; C.-T. Wu; C.-H. Shen; L. -C. Chen; K.-H. Chen; Y.-L. Wang; T. Tanabe; T. Maruyama; H.-M. Lin; Chia-Chun ChenStructure of nano-domes formed by Ga+ ion irradiation with a focused ion beam (FIB) apparatus onto GaN nanowires (NWs) was examined with conventional transmission electron microscopy (CTEM), electron energy-loss spectroscopy (EELS) and energy-filtering TEM (EF-TEM). The nano-dome consisted of metallic gallium, covered by a GaN layer, the structure of which is amorphous or liquid. It is considered that the dome structure is formed by preferential displacement of lighter element (N) and agglomeration of heavier one (Ga). 1 MeV electron irradiation onto the sample pre-irradiated by Ga+ ions at a dose below the threshold for the dome formation induced the N2 bubble formation without segregating Ga atoms, which suggests the radiation-enhanced diffusion (RED) of heavy atoms plays an important role in the nano-dome formation.Item Enhanced Dynamic Annealing in Ga+ ion-implanted GaN Nanowires(American Institute of Physics(AIP) Publishing, 2003-01-20) S. Dhara; A. Datta; C.-T. Wu; Z.-H. Lan; K.-H. Chen; Y.-L. Wang; L.-C. Chen; C.-W. Hsu; H.-M. Lin; Chia-Chun ChenGa+ion implantation of chemical-vapor-deposited GaNnanowires (NWs) is studied using a 50-keV Ga+focused ion beam. The role of dynamic annealing (defect-annihilation) is discussed with an emphasis on the fluence-dependent defect structure. Unlike heavy-ion-irradiated epitaxialGaN film, large-scale amorphization is suppressed until a very high fluence of 2×1016 ions cm−2. In contrast to extended-defects as reported for heavy-ion-irradiated epitaxialGaN film, point-defect clusters are identified as major component in irradiated NWs. Enhanced dynamic annealing induced by high diffusivity of mobile point-defects in the confined geometry of NWs is identified as the probable reason for observed differences.