教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/37076

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Efficient Light Harvesting by Photon Downconversion and Light Trapping in Hybrid ZnS Nanoparticles/Si Nanotips Solar Cells
    (American Chemical Society, 2010-10-26) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Chen; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. Chen
    A hybrid colloidal ZnS nanoparticles/Si nanotips p−n active layer has been demonstrated to have promising potential for efficient solar spectrum utilization in crystalline silicon-based solar cells. The hybrid solar cell shows an enhancement of 20% in the short-circuit current and approximately 10% in power conversion efficiency compared to its counterpart without integrating ZnS nanoparticles. The enhancement has been investigated by external quantum efficiency, photoluminescence excitation spectrum, photoluminescence, and reflectance to distinct the role of ZnS quantum dots for light harvesting. It is concluded that ZnS nanoparticles not only act as frequency downconversion centers in the ultraviolet region but also serve as antireflection coating for light trapping in the measured spectral regime. Our approach is ready to be extended to many other material systems for the creation of highly efficient photovoltaic devices.
  • Item
    Efficient light harvesting and carrier transport in PbS quantum dots/silicon nanotips heterojunctions
    (IOP Publishing, 2011-03-02) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. Chen
    Light harvesting from nanocomposites consisting of silicon (Si) nanotips and PbS quantum dots (QDs) has been investigated. We show that Si nanotips provide direct carrier transport paths, additional interfacial area and light trapping. We observe that there is a dramatic enhancement in short-circuit current (from 9.34 to 14.17 mA cm−2) with nanotips structure than that of the bulk Si wafer. In addition, with an additional electron blocking layer, the photovoltaic performance can be further increased. The nanocomposites consisting of QDs and Si nanotips therefore open a promising route for efficient light harvesting from visible to infrared with improved power conversion efficiency.