學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73899

Browse

Search Results

Now showing 1 - 10 of 13
  • Item
    鉑錫合金奈米棒觸媒之氧化程度對直接甲醇燃料電池的電化學催化效果研究
    (2022) 李鑑鈞; Li, Chien-Chun
    直接甲醇燃料電池(DMFCs)是透過將甲醇燃料以化學能形式直接轉換成電能的一種電池,其可攜帶性使之成為極具發展潛力的供電裝置。在此研究中分別藉由實驗與理論計算兩個面向來檢定DMFCs中的甲醇氧化反應(MOR),並通過此研究揭示將Pt與具高度親氧性Sn進行氧化後,其對陽極觸媒PtSn所造成的重要影響。關於實驗部分,原先的Pt3Sn nanorods(NRs)是透過甲酸還原法所合成,隨後透過改變不同溫度(150, 200, 250與300oC)與加溫時間(1, 1.5, 3與5 hr)的氧化後處理過程進行各式樣品的製備。其中經由不同的氧化條件所得到的PtSn NRs氧化程度皆不盡相同,所以藉HRTEM, XRD, EDX, XPS對觸媒的表徵進行鑑定,並由電化學測試瞭解其MOR的催化能力。透過實驗的結果可以發現,當Pt3Sn NRs在經過200oC加熱氧化三小時的條件下擁有約54 %的表面氧化度,也具備最為優異的MOR活性與觸媒穩定性。計算的部分則分別探討甲醇在乾淨與經過氧化(表面具有氧原子吸附)的Pt表面、NR模型的脫氫反應及氧化反應。由結果顯示出,無論是乾淨的Pt表面亦或是NR,(100)面皆擁有較低的脫氫反應能與反應能障。之於經過氧化的表面,(100)面的氧化反應可以得到更進一步的提升。NR則因為同時具備(100)與(111)表面,且在side位點擁有最穩定的氧吸附。因此亦如實驗的結果,其將展現最優異的MOR催化活性與觸媒穩定性。
  • Item
    新穎能源材料之第一原理計算模擬與研究
    (2020) 劉啟佑; Liu, Chi-You
    為了降低石化燃料的使用,科學家們一直致力於尋找乾淨的替代能源,希望在未來使用液態或固態形式的能源。與此同時,也需要發展安全又具經濟效益的新能源儲存系統,最終的目標是尋找具有高能源密度、容易儲存及運輸、並且更為永續的能源。在本論文當中使用了計算化學的方法,在奈米至原子尺度下,藉由電子結構、催化性質和化學反應機構的探討,來改善並發展新的能源材料。總和來說,我們基於第一原理方法的理論模擬,針對不同能源與能源儲存系統的材料表面進行研究,包含了直接甲醇燃料電池(Direct methanol fuel cell, DMFC)、鋰硫(Li-S)電池、質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)和費托合成反應(Fischer-Tropsch synthesis, FTS)等領域。各部分詳細的介紹如下: 第一部份:直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究 在第三章中將針對液態的直接甲醇燃料電池(DMFC)進行討論。DMFC反應過程中產生的CO或其他碳氫化合物(CmHn)很容易就毒化Pt金屬陽極表面。我們研究CO及H2O於乾淨Pt2/MO2(110)以及多氧Pt2/o-MO2(110)表面(M = Ru及Ir)上的吸附現象。結果顯示使用多氧的表面能夠有效的降低CO及H2O的吸附能,並且讓CO與表面的OH基團以更低的活化能進行類水氣轉換(WGS-like)反應,減緩CO毒化的現象。 第二部分:鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析 第四章我們則針對鋰硫(Li-S)二次電池進行研究。近期的文獻顯示,若在陰陽極中間放置以碳為基底的材料做為中間層(interlayer),能夠有效改善含鋰多硫化物(LiPSs)的飛梭現象並增加電池壽命。我們建構了不同結構形式的異原子(N或S)取代的石墨稀表面,發現當使用含鋰的N及S共同取代石墨稀表面做為鋰硫電池中間層時,能夠讓LiPSs以完整吸附機制吸附,有效的減緩飛梭現象。 第三部分:Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響 第五章中探討了質子交換膜燃料電池(PEMFC)的陰極氧氣還原反應(ORR),當使用二維Tin+1CnT2與Pt/v-Tin+1CnT2 (n = 1 ~ 3, T = O and/or F)的材料時,不同取代基對於ORR反應過電壓η的影響。我們的結果顯示F的取代基在表面上鍵結較弱且較不穩定,與實驗上觀察到脫附或被取代的現象符合。但由於F取代基在表面上時,內層的Ti與C具有較高的共價性,有利於吸附物吸附並反應,導致使用含有F取代基的表面進行ORR時可以得到較低的過電壓η。 第四部份:利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應 在費托合成(FTS)中,C-C成鍵的效率是最重要的因素。在第六章中我們模擬了雙金屬中心的M1M2/N6h-CNT (M = Fe, Co, and Mn)表面,分析其電子結構及催化活性,並考慮了三種能夠增長碳鏈長度的C-C成鍵反應:[CO + CH3]、[CO + CH2]和[CH2 + CH2]。結果顯示,CH2單體在2Co/N6h和CoMn/N6h表面上能經由一個近乎為零的活化能,順利進行C-C成鍵反應。整體來說,我們分析了雙金屬中心的系統對於在FTS中增加CO轉換率並降低C1產物比例的可行性。
  • Item
    以理論計算探討:I.氮氧化物在鎳(111)表面的反應機構II.一氧化氮在鎳-鉑雙金屬的分解反應III.二氧化碳在碳化鎢與碳化鎢-鈷合金表面反應探討
    (2012) 吳亘曜; Wu, shiuan-yau
    摘 要 第一部分 :氮氧化物(NOx)在Ni(111)表面的反應機構之探討 利用空間週期性來探討不同的氮氧化物(包含NO、NO2和N2O)在Ni(111)表面的反應機構,進一步討論到不同的覆蓋率下可能的變化。其中,在覆蓋率小的情況下,吸附的分子無論是NO、NO2和N2O都會完全分解成吸附態的N和O原子,而克服了2.34 eV的活化能之後,表面的N原子會再結合成N2分子從表面脫附。但是當覆蓋率不斷的提升之後,還沒有完全分解的NO和表面的N 原子會進行再結合,在高覆蓋率的情況下,N2O可能會進行脫附或者進一步斷N-O鍵形成N2分子。而在高覆蓋率的情況下會有N2O的副產物也可以從實驗的觀察得到證實。   第二部分: 一氧化氮(NO)在鎳-鉑雙金屬表面分解反應的探討 利用空間週期性來探討一氧化氮在Ni-Pt雙金屬表面的吸附與分解反應。其中,我們利用到的Ni-Pt雙金屬表面有: xNi@Pt(111), NixPt4-x(111), 和(4–x)Pt@Ni(111) ( x = 0~4)。 在所有的雙金屬表面當中,NO傾向被吸附在表面上有較多Ni原子的位置,而吸附能會隨著表面上Ni原子的數量增加而上升。另外,在我們所探討的所有雙金屬組成當中,當出現了表層的組成相同而內層不同的情況下,依不同的內層,NO分子吸附能的順序依次為xNi@Pt(111) > NixPt4-x(111) > (4 – x) Pt@Ni(111)表面,而NO斷鍵所需的活化能則剛好相反,換言之,在我們所有的表面當中,吸附能越大,斷NO鍵所需要的能障就越小。另外,我們也利用了局部電子態密度的分析來探討不同內層組成所造成雙金屬效益的原因。   第三部分:二氧化碳在碳化鎢WC(0001)和碳化鎢-鈷合金WC-Co表面反應探討 利用空間週期性探討二氧化碳在碳化鎢(0001)和碳化鎢-鈷合金表面的吸附。並進一步探討在不同鎢鈷比例的情況下,二氧化碳分解與氫化的趨勢。其中,碳化鎢(0001)表面有明顯的局域化現象,而當表面的組成結構改變,伴隨鈷原子的比例增加,會改變表面的局域化情形,進一步影響到吸附與反應的趨勢。而當鈷的覆蓋率為0.25ML的情況下,二氧化碳在WC-Co(0.25ML)有最佳的吸附能,而當鈷的覆蓋率增加到0.50ML,二氧化碳的吸附能雖然略減,但在該表面有最小的分解活化能。而氫化反應的活化能則是隨著表面鈷原子的比例增加而遞減,顯示鈷原子對氫化反應的幫助。而在這個部分,我們利用了電子局域化函數分析來探討表面局域化情況對二氧化碳催化反應的影響。
  • Item
    含十六族元素之異核金屬羰基團簇物:合成與電化學和電子吸收光譜以及理論計算探討
    (2011) 繆佳曄
    1. E/Mn/Cr/CO (E = S, Se) 系統之研究 當[PPN][E2Mn3(CO)9] (E = S, Se)、Cr(CO)6和PPNCl以莫耳比1:1:2或1:2:2於混合乙腈及甲醇之鹼性溶液(4M)中反應,可得到含hydride之混合錳鉻化合物[PPN]2[HE2Mn3Cr(CO)14] (E = S, [PPN]2[1a]; Se, [PPN]2[1b])。然而,起始物之陽離子來源為TMBA時,進而加入Cr(CO)6以莫耳比1:1於鹼性甲醇溶液(4M)中加熱迴流反應,可獲得八面體結構之混合錳鉻團簇物[TMBA]3[E2Mn3Cr(CO)12] (E = S, [TMBA]3[2a]; Se, [TMBA]3[2b])。化合物1a和1b亦可於鹼性甲醇溶液中加熱迴流並進行合環反應而轉變成化合物2a和2b。此外,若化合物1a和1b加入一或兩當量Cr(CO)6於二氯甲烷溶液中加熱迴流反應,則可進行擴核反應而得到含hydride之混合錳鉻化合物[HE2Mn3Cr2(CO)19]2─ (E = S, 3a; Se, 3b)。其化合物生成及相關性質、結構轉換以及電化學性質藉由理論計算進一步驗證。 2. E/Mn/Ru/CO (E = S, Se) 系統之研究 當[PPN][E2Mn3(CO)9] (E = S, Se)與Ru3(CO)12以莫耳比1:1於混合乙腈及甲醇溶液中加熱迴流反應,可得到八面體結構之同核含釕團簇物[HE2Ru4(CO)10]− (E = S, 3a; Se, 3b)和異核含混合錳釕團簇物[E2Mn2Ru2(CO)11]2− (E = S, 4a; Se, 4b)。此外,化合物4a和4b相較於等電子的八面體結構之同核含錳團簇物[E2Mn4(CO)12]2− (E = S, 1a; Se, 1b)和異核含混合錳鉻團簇物[E2Mn3Cr(CO)12]3− (E = S, 2a; Se, 2b)具有良好電子傳遞行為,其氧化位置發生在雙錳金屬羰基片段。紫外可見光吸收光譜顯示此系列同核及異核化合物之電子躍遷為MLCT (Mn→E or COs)或混合MLCT及MMCT (Mn→Cr or Ru)特性,並藉由反射光譜得知此系列化合物其能隙介於1.25至1.80 eV。其化合物生成及相關性質、電子吸收以及電化學性質藉由理論計算進一步驗證。 3. Te/Ru/Cu/CO 系統之研究 當[PPh4]2[TeRu5(CO)14]加入一當量[Cu(MeCN)4][BF4]於二氯甲烷溶液及低溫下反應,可得到三銅橋接之雙八面體結構的團簇物[PPh4]2[{TeRu5(CO)14}2Cu3Cl] ([PPh4]2[1])。若將上述反應之[Cu(MeCN)4][BF4]提高至兩當量,可獲得四銅橋接之雙八面體結構團簇物[PPh4]2[{TeRu5(CO)14}2Cu4Cl2]∙CH2Cl2 ([PPh4]2[2]∙CH2Cl2)和雙銅蓋接之八面體結構團簇物[TeRu5(-CO)2(CO)12Cu2(MeCN)2] (3a);然而,此反應若於室溫下進行,則可獲得化合物2以及化合物3a之結構異構物[TeRu5(-CO)3(CO)11Cu2(MeCN)2] (3b)。此外,化合物1和2的生成反應涉及二氯甲烷之碳氯鍵活化,而化合物3a和3b的生成是藉由反應溫度控制。化合物1─3的生成及相關性質、結構轉換、電子吸收以及電化學性質藉由理論計算進一步驗證。 4. Te/Fe/Cu/dipyridyl 系統之研究 當[TeFe3(CO)9{Cu(MeCN)}2]與不同有機含氮配子依劑量莫耳比於四氫呋喃溶液中反應,可獲得一維或二維含有機配子之混合鐵銅羰基的有機金屬-有機混合之配位聚合物1─4。此外,利用一鍋化方式將[TeFe3(CO)9]2─、[Cu(MeCN)4][BF4]與有機配子H2bpe or tmdpy於四氫呋喃溶液中反應,可得到聚合物3和4其結構中的陰離子之混合鐵銅團簇物[{TeFe3(CO)9Cu}2L]2─ (L = H2bpe, 5; tmdpy, 6)。化合物1─6之生成及相關性質、電子吸收以及導電性藉由理論計算進一步驗證。 關鍵字:第十六族元素、異核金屬、團簇物、電化學、電子吸收光譜、理論計算
  • Item
    利用理論計算探討電催化還原二氧化碳的反應機制
    (2012) 李子翊; Zi-Yi Li
    RuII(bpy)(trpy)(CO), bpy = 2,2'-Bipyridine, trpy = 2,2':6',2”-terpyridine, 這個錯合物是少數能夠將二氧化碳直接還原成甲醇的有機錯金屬錯合物,這個錯合物曾經被報導可以在通入-1.5V的電壓環境下,生成甲醇和碳碳鍵生成的產物,利用此催化劑還原二氧化碳的產物包括了CO、HCOOH、CH3OH、HC(O)H、H(O)CCOOH以及HOCH2COOH,而第一個推測這個催化反應的反應機制是Tanaka,但是這個催化反應的各種中間產物的詳細資訊,不管是在實驗或是理論計算中都還是不清楚的。 在目前的研究利用理論計算的方法來分析這個反應機制,包括利用還原電位,pKa以及自由能來更完善Tanaka所預測的反應機制,並探討其反應的可行性。 關鍵字: 二氧化碳,理論計算,電催化,反應機構
  • Item
    NOx ( x=1, 2) 吸附與分解反應在M(111) (M=Cu, Ir, CuIr) 表面之理論計算研究
    (2010) 顏美吟; Mei-Yin Yen
    第一部分 : NOx ( x = 1, 2)在Cu(111)表面之吸附與分解反應 我們使用週期性密度泛函理論來研究NOx ( x= 1, 2)在Cu(111)表面之吸附與分解反應,計算結果顯示NO2在表面上最穩定的吸附結構為μ-O,O´-nitrito,以兩個O原子接在表面Cu原子上,而NO2要進行分解時,會轉換成μ-N,O-nitrito結構,以N原子與一端O原子接在Cu原子上。NO2逐步分解反應第一步活化能為1.05 eV,第二步為2.08 eV,最後在表面上形成N(a) + 2O(a)。另外,我們也計算了三組NO分解的模型,分別為NO / Cu(111)、O + NO / Cu(111)以及N + NO / Cu(111),探討NO在三種環境中的分解能障。結果發現,有O原子共吸附時,NO的5σ軌域面積是三組中最大的,而有N原子共吸附時的5σ面積最小,代表NO在O-pre-adsorbed的環境下要行斷鍵反應最不易。計算三組NO斷鍵活化能:O + NO(2.08 eV)>NO(1.88 eV)>N + NO(1.28 eV),與先前計算吸附後NO的5σ軌域面積大小呈線性關係。 第二部分 : NO在Cu(111)、Ir(111)、Ir@Cu(111)、Cu@Ir(111)表面的吸附與分解反應   我們使用週期性密度泛函理論來研究NO在單金屬Cu(111)與Ir(111)以及雙金屬Ir@Cu(111)、Cu@Ir(111)表面之吸附與分解反應,其中雙金屬表面又分不同比例(在M(111)表層分別取代1、5、9顆之M´)的金屬取代。計算結果發現,NO在Ir(111)純金屬表面的吸附與分解皆較Cu(111)容易。比較雙金屬Ir@Cu(111)系列,吸附的部分以1Ir@Cu(111)表面可得到最大的NO吸附能(-2.56 eV),而分解的部分則是在5Ir@Cu(111)表面有最低的活化能(0.76 eV)。另外,比較Cu@Ir(111)系列,吸附的部分以5Cu@Ir(111)表面可得到最大的NO吸附能(-2.72 eV),而分解的部分同樣在5 Cu@Ir(111)表面有最低的活化能(1.26 eV)。不論是Ir@Cu(111)或Cu@Ir(111)系列,在NO吸附的選擇上,皆是偏好在Ir原子位置上,而NO斷鍵部分也發現在雙金屬表面上大部分有低於純金屬表面的活化能,除了1Ir@Cu(111)表面外。
  • Item
    以理論計算方式探討甲烷在鉑金屬/氧化石墨烯平台上的催化反應研究
    (2014) 林建豪; Chien-Hao Lin
    我們利用密度泛涵理論來計算在氧化石墨烯上吸附兩顆金屬鉑原子,並在兩個金屬原子上各別吸附兩個甲烷氣體,利用催化表面的氧化能力將其轉換成甲醇的過程。根據早期學術上的研究發現鉑金屬對於碳氫化合物的吸附能比起大部分之金屬較大,並且能加速碳氫鍵的斷裂,有利於將甲烷分子氧化成甲醇。所以在計算中,兩顆鉑原子分別吸附兩個甲烷氣體之後(其中鉑原子已和氧化石墨烯有了良好鍵結),我們預測了多條不同氧化路徑,主要分為兩大部分。第一部分總括有三個步驟 (1) 斷其中一顆甲烷的碳氫鍵,使氫原子與氧化石墨烯上的氧原子鍵結形成氫氧根,這時所需之能量為0.34 eV。(2) 斷另一個甲烷上的碳氫鍵,使其吸附在鉑原子上形成甲基,這時所需0.51 eV。(3) 最後我們將甲基和氫氧根結合產生甲醇,此時所需能量為0.2 eV。最後甲醇脫附就完成前半部反應。而後半部反應則是再通入氧氣分子,總括有兩個步驟(1)透過O-O鍵的斷裂和氫氧基的形成,須越過0.34eV 的能障。(2) 將甲基和氫氧根結合產生第二個甲醇,此時所需能量為1.25eV,並同時填補催化表面的氧原子,使其恢復一開始的結構。 關鍵字: 鉑原子、氧化石墨烯、甲烷、理論計算
  • Item
    三氮二氧配位基鈷錯合物之合成、鑑定與 一氧化氮反應性之研究
    (2014) 王俊傑; WANG, CHUN-CHIEH
    本研究使用本實驗室先前所開發之N3O2 五牙基H2BDPP 和 H2BDPOMeP,經去質子化後與CoCl2 反應生成五配位二價鈷錯合物 Co(BDPP) (1) 及Co(BDPOMeP) (2),並可將其氧化至三價鈷錯合 物[Co(BDPP)(H2O)](BF4) (3) 與 [Co(BDPOMeP)(H2O)](BF4) (4)。錯 合物1 - 4 使用 X-ray 單晶繞射儀解析其結構,並以紫外-可見光光 譜儀、循環伏安儀等鑑定其物性和化性。在室溫下將錯合物 1 溶入 二氯甲烷,並與一氧化氮反應,從紫外-可見光光譜儀偵測反應溶液 可發現特徵吸收峰出現在380 和525 nm,並在其遠紅外光光譜觀察 到 1615 cm−1 的震動吸收峰,可能生成Co(BDPP)(NO) (5),在氮氣 下可長時間穩定存在,最後以理論計算加以輔佐其生成的可能性。另 一方面,在室溫下將錯合物 2 溶入二氯甲烷,並與一氧化氮反應, 亦可從紫外-可見光光譜儀偵測到特徵吸收峰在380 及518 nm。有 趣的是此時遠紅外光光譜觀察到1720 cm−1 的震動吸收峰,可能有 Co(BDPOMeP)(NO) (6) 的生成。
  • Item
    含鎳超氧化物歧化酶擬態化合物之理論計算反應機制之探討
    (2013) 溫淑如
    含脯胺酸衍生物之五牙基二價鎳錯合物[Ni(H2BDPP)- (tBuNC)](BF4)2 (1-tBuNC),藉由二價及三價鎳之間的氧化態轉換,具有將超氧離子進行歧化反應之能力,使其生成氧氣及過氧化氫分子。衍生物[Ni(BDPP)](PF6) (3)則具有將超氧離子氧化生成氧氣之能力。為了瞭解此擬態化合物之反應機制,本研究利用DFT理論計算的方法,提出四種可能路徑,並針對各反應過程中的過渡態及其電子組態之改變進行分析及探討。根據各反應之能量,推得出最合理的反應機構如下:二價鎳錯合物[Ni(H2BDPP)]2+ (1m)被超氧離子去質子化生成四配位平面四方構型的[Ni(HBDPP)]+ (2m)及超氧化氫自由基,接著超氧化氫自由基與錯合物2m的鎳中心鍵結,並進行氫原子轉移(HAT)反應生成[Ni(BDPP)]+ (3m)及過氧化氫,隨後錯合物3m再與第二個超氧離子反應,經由電子轉移生成[Ni(BDPP)] (4m)及氧氣。在此機制中,鎳錯合物是以高自旋組態(high spin state)下進行反應,速率決定步驟為超氧化氫鍵結到錯合物2m之二價鎳中心進行氫原子轉移反應。此理論計算的結果,使我們對於此擬態化合物之歧化反應有更進一步的瞭解。
  • Item
    含鉍之鉬金屬團簇化合物的離子交換反應及電化學探討與十四族(錫、鉛)元素與硫之鐵團簇化合物的合成暨電化學與電子吸收光譜探討
    (2013) 游翔竣
    1.Bi─Mo系統 以 [PPh4][BiMo3(CO)9(-OC2H4OMe)3Na] 為起始物,分別逐次滴加不等當量之金屬陽離子,利用紫外/可見光光譜觀察其陽離子能否進行交換,此外,為了觀察離子置換的能力,並藉由 1H-NMR 觀察 [PPh4][BiMo3(CO)9(-OC2H4OCH3)3Na] 與鹼金屬氯化物 (LiCl、KCl)、鹼土金屬氯化物 (MgCl2、CaCl2、SrCl2) 以及鋅族元素氯化物 (ZnCl2、CdCl2) 進行反應,利用產物之積分值計算平衡常數,再者,為了探討不同離子引入後的氧化還原行為,進一步偵測此系列化合物 [BiMo3(CO)9(- OC2H4OMe)3ML]─ (ML = Li、Na、Ca(OAc)、Cd(OAc)、CoCl、ZnCl) 以及 [BiMo3(CO)9(-OC2H4OMe)3ML] (ML = Sn、Ca(MeCN)2) 的電化學圖譜,並搭配理論計算加以佐證。 2.E─S─Fe系統 (E = Sn, Pb) 利用十四族鐵團簇化合物 [EFe3(CO)9]2─ 或 [EFe4(CO)16]2─ (E = Sn, 1a; Pb, 1b) 與硫粉在 MeOH 下進行反應可成功合成出混合 14 與 16 族之鐵團簇化合物 [ES2Fe4(CO)14]2─ (E = Sn, 2a; Pb, 2b) 。 根據 X-ray 構造解析,化合物 2a 和 2b 是由 [E{Fe(CO)4}2]2─ 片斷連接蝴蝶型結構 [S2Fe2(CO)6] 而成的團簇化合物。此外將團簇化合物 2a 和 2b 和起始物 [EFe4(CO)16]2─ (E = Sn, 1a; Pb, 1b) 進一步藉由電化學以及電子吸收光譜並搭配 DFT 理論計算,探討引入 S 對其化合物之影響及其主族所扮演之角色。