學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73899

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    兩性共聚物: 合成與應用
    (2022) 劉幸怡; Liu, Xin-Yi
    本論文研究分為三個主體,這三個主題分別為共聚物分散劑合成應用於氧化石墨烯與環氧樹脂複合材料熱傳性、兩性離子分散劑的合成及應用於砂漿中氧化石墨烯的分散、兩性離子水膠/矽藻土複合材料的合成及應用於砂漿中。第一個主題為合成一種共聚物Poly (GMA-co-Eu),選用甲基丙烯酸缩水甘油酯(Glycidyl methacrylate)和烯丙基甲氧基苯酚(Eugenol)為單體,偶氮二異丁腈(AIBN)為起始劑,經自由基反應利用不同單體比例和起始劑濃度聚合成共聚物分散劑P(GMA/Eu)。經由FTIR及NMR光譜分析確認其化學結構。利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和RAMAN光譜確認。接著探討溶劑、共聚物添加量等對於氧化石墨烯/環氧樹脂(GO/Epoxy)複合材料的熱傳性影響影響。利用SEM觀察氧化石墨烯在環氧樹脂裡的分散性。比較添加不同PGE和PVP,TX100對於氧化石墨烯/環氧樹脂複合材料的熱傳性。實驗結果顯示利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和Raman光譜確認。在合成的5個PGE中,以PGE3 (GMA/Eu=2, Mn=6.7×103)對GO的分散效果最好。在含6% PGE、10wt% GOA的GO/Epoxy複合材料K值為3.32 W/mK,相較於沒有添加分散劑含10wt% GOA的複合材料K值(=2.62 W/mK)提升了26%;在含6% PGE、20wt% GOA的GO/Epoxy複合材料K值為5.02 W/mK,相較於沒有添加分散劑含20wt% GOA的複合材料K值(=2.93 W/mK)提升了71%。添加PVP和TX100,也能促進GO的分散而提升所得GO/Epoxy複合材料的K值。添加相同劑量的5個PGE PGE所得的複合材料的K值都高於添加PVP者,顯示PGE對GO的分散效果優於PVP。第二個主題為合成一種兩性離子型羧酸型共聚物:丙烯醯胺-(1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)) Poly(AM-co-CDP) (PAC),首先使用馬來酸酐和N,N-二甲基-1,3-丙二胺,及氯醋酸鈉反應得到單體1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)(CDP),硫酸銨(APS)為起始劑,與丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物Poly(AM-co-CDP)。使用FTIR和1H-NMR光譜鑑定其結構,利用GPC測定其分子量,將PAC加入含氧化石墨烯的人工孔隙溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗,探討PAC對於人工孔隙溶液中GO的分散效果。將PAC/GO添加在水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度並與商用氧化石墨烯GOB和商用分散劑PC比較。實驗結果顯示: 經由沉降體積、粒徑分布、界達電位和黏度實驗觀察,隨著PAC添加量的增加,GO人工孔隙溶液的黏度漸減,溶液中GO沉降速率減緩、GO粒徑變小、GO界達電位的負值變大,顯示此共聚物確實能促進GO的分散。在合成的PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。相較於商用型羧酸分散劑PC,PAC有更佳的GO分散效果。隨著PAC添加量的增加,含GO的砂漿抗壓/抗彎強度亦增。添加10wt% PAC23、0.05 wt% GOA的28天齡期砂漿試體,有最大的抗壓和抗彎強度、分別為37.2 MPa和7.5 MPa,比未添加氧化石墨烯或分散劑的對照組試體提升了32.3%和111%。相較於PC,PAC更能提升砂漿的機械性質。在合成的數種PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。第三個主題為製備兩種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽藻土為單體,製備PAC和PACD兩種兩性離子型的吸水性水膠,使用FTIR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽藻土含量對於水膠在各種水溶液下吸水率的影響。實驗評估將PACD複合水膠加到水泥砂漿中,作為自養護劑是否合宜,探討水膠和矽藻土量,對於水泥漿中對於水泥砂漿壓強度、內部濕度、乾縮量的影響。實驗結果顯示,PACD複合水膠,當AM/CDP= 4,APS=0.5 mle%,MBA=0.5 mole%,矽藻土15 wt%時的反應條件下,在純水中和孔隙溶液中的最大吸水率分別為362.4 g/g和115.4 g/g。添加矽藻土水膠的砂漿試體的內部濕度高於未添加矽藻土水膠的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的內部濕度隨著添加的PACD水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體內部濕度為最高,其內部濕度到第22天方開始從100%往下降,到第28天的內部濕度仍有78.6%。添加矽藻土的砂漿試體的抗壓強度高於未添加矽藻土的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的抗壓強度隨著添加的PACD複合水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的MD23砂漿試體抗壓強度為最高,在28天齡期的抗壓強度為39.8MPa,比未添加矽藻土的的PAC水膠的試體抗壓強度(34.5 MPa)提升了15%;比無添加水膠的試體抗壓強度(33.1 MPa)提升了20%。添加矽藻土的砂漿試體的乾縮量低於未添加矽藻土的砂漿試體,後者則低於未添加水膠的砂漿試體。砂漿試體的乾縮量隨著添加的PACD水膠所含DE比例增加呈現先下降、達最低值後再上升的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體乾縮量為最低。
  • Item
    矽灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究
    (2020) 林士傑; Lin, SHIH-CHIEH
    本論文主要目的為製備一種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽灰為單體,合成 SF/PCA,使用FT-IR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽灰含量對於水膠在各種水溶液下吸水率的影響。 將SF/PCA水膠加到混凝土和水泥砂漿中,作為自養護劑時,探討單體比例和矽灰比例含量,對於水泥漿中對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。 實驗結果顯示, SF/PCA水膠,當AM/CDP= 4, APS= 0.7 mole%, MBA= 0.5 mole%, SF = 10 wt%時,在去離子水中、Pore solution和水泥漿濾液中的最大吸水率分別為480.3 g/g、130.3 g/g、81.3 g/g。 將SF/PCA水膠加入水泥砂漿和混凝土中,當水膠劑量為0.2 wt% 和矽灰含量為10 wt%時,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有較佳的提升效果。
  • Item
    飛灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究
    (2020) 蔡承育; Cai, Cheng-Yu
    近年來,學者們提出使用吸水性材料作為自養護劑添加到混凝土中可以有效的改善混凝土的性質,因此本論文主要目的為製備一種飛灰/兩性離子型複合水膠(FA/PDA)作為混凝土的自養護劑,水膠使用丙烯醯胺(AM)、N,N-二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA)和飛灰(FA)合成,合成後使用FT-IR光譜作結構鑑定和探討單體比例、起始劑劑量、交聯劑劑量、飛灰含量對於水膠在各種水溶液下吸水率的影響。 將FA/PDA水膠加到水泥砂漿和混凝土中,作為自養護劑時,探討水膠添加量及水膠內飛灰比例的含量,對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。 將FA/PDA水膠置於水溶液中,在吸水率在一開始會先快速的上升,然後趨於平穩後即達到飽和吸水率,實驗結果顯示,FA/PDA水膠,吸水率會隨AM比例、交聯劑劑量、起始劑劑量和飛灰含量增加而增加,當AM/DCA= 3 MBA= 0.3 mole%, APS= 0.5 mole%,FA = 15 wt%有最高的吸水率。 FA/PDA水膠在去離子水中、0.1M NaCl(aq)、0.1MCaCl2(aq)、Pore solution和水泥漿濾液中的最高的吸水率分別為398.07g/g 、129.63 g/g、116.5 g/g、116.38g/g、73.44 g/g。 將FA/PDA水膠加入水泥砂漿和混凝土中,抗壓強度隨著水膠量的添加而上升,當水膠劑量為0.2 wt%時有最高的強度,在添加不同種類的FA/PDA水膠發現,飛灰含量為15 wt%的FA/PDA水膠,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有最好的提升效果。
  • Item
    兩性離子型水膠作為自養護劑之研究
    (2010) 陳瑩芝
    本論文為延續可敬學長的方法,製備一種兩性離子型的高吸水性水膠,使用丙烯醯胺和disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio)propylamino)- 4-oxobut-2-enoate)(CDP)為單體,交聯劑為MBA,起始劑為APS聚合而成的poly(AAm-co-CDP)。使用FT-IR作結構鑑定,樣品表面孔洞透過電子顯微鏡觀察,影響反應的參數包括:單體比例、起始劑劑量、交聯劑劑量和反應溫度,接著浸泡到純水和鹽水中測其吸水率。接著評估PCA水膠加到水泥漿和水泥砂漿中作為自養護劑是否合宜,於水泥漿中探討其水化程度、圓盤裂縫和凝結時間;水泥砂漿中則探討水分重量損失、抗壓強度、內部濕度和乾縮量。 實驗結果顯示,當單體比例= 0.67 (mol/mol),MBA劑量= 0.5 mol%,APS劑量= 1.3 mol%,反應溫度75℃,PCA水膠在純水中的吸水率為421(g/g),0.1M NaCl(aq) 和0.1M CaCl2(aq)的吸水率分別為46.4、40.2 (g/g)。將PCA水膠加入水泥砂漿中當自養護劑,最佳添加劑量為0.25wt%,對水泥砂漿試體的重量損失、抗壓強度、內部濕度和乾縮量與未添加水膠的控制組相比,均有提升效果。 接著在水泥漿中發現,添加水膠在初期會延緩水化程度,但後期則會使水泥水化更完整。在圓盤裂縫測試中,發現水膠添加能有效減少裂縫生成,但添加量過多卻會造成表面缺陷。添加水膠會使水泥漿提前初凝時間,延緩終凝時間。
  • Item
    兩性水膠的合成以及對水泥砂漿保水性質的影響
    (2008) 莊景翔
    本研究主要合成一種兩性的水膠PDCA,先利用馬來酸酐和N,N-二甲基胺乙醇合成二甲基胺乙基氧羰基丙烯(DME),再和氯醋酸鈉反應得到單體N,N—二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA),最後和丙烯醯胺聚合反應合成PDCA水膠。以FT-IR,1H-NMR光譜確認DME和DCA結構。探討PDCA的單體比例、起始劑劑量以及交聯劑劑量對在純水和鹽水中吸水率之影響,結果顯示PDCA的吸水率會單體DCA比例先增加而上升,隨後則下降;起始劑劑量增加會使PDCA之吸水率下降;交聯劑劑量增加會使PDCA的吸水率先增後減。以及與PAA、P(AA/AM)水膠比較在純水和鹽水中之吸水率。 結果顯示PDCA最佳反應條件為DCA:AM = 4:6;APS = 0.2 mol%;MBA = 0.5 mol%,所製得之PDCA在純水中的吸水率可達316.5 g/g;在0.1M NaCl、0.1M CaCl2的吸水率分別為26.7 g/g、13.6 g/g。 研究添加PDCA對於水泥砂漿之重量損失、保水率、相對濕度和抗壓強度的影響,結果顯示添加1.0%的PDCA量對於水泥砂漿為最佳添加量,試體之保水率、相對濕度都有增加,重量損失減少;抗壓強度則是下降。另外,使用DSC測量水泥漿的水化程度,結果顯示隨著PDCA劑量增加而水化程度增加。
  • Item
    兩性水膠的合成及作為水泥砂漿之自養護劑
    (2008) 朱可敬
    本篇論文主要是合成兩性離子型的水膠,poly(acrylamide-co-DAE) (PDAE),探討單體比例、起始劑、交聯劑與水解時間對PDAE水膠吸水率的影響,以及水膠在純水與鹽水中,在不同pH下的吸水率。並且評估PDAE水膠作為水泥砂漿自養護劑之可行性,即探討PDAE對水泥砂漿試體的保水率、內部相對溼度、抗壓強度之影響。合成之PDAE以FT-IR光譜確認其結構。 研究結果顯示最佳反應條件為DAE:AAm = 4:6、APS = 1.3 mol%、MBA = 0.5 mol%,所製得之PDAE在純水中的吸水率可達400 g/g;在0.1M NaCl(aq)、0.1M CaCl2(aq)的吸水率分別為39.3、31.1 g/g。最佳水解時間為六小時,可使PDAE吸水率由400增加到713 g/g;在0.1M之NaCl(aq)的吸水率由39.3增加到78.2 g/g。 以PDAE作為水泥砂漿之自養護劑,測試結果可知最佳添加量為0.14% ,所形成的水泥砂漿試體的保水率、內部相對溼度與控制組相比較均有提升,抗壓強度則略為下降。
  • Item
    製備超順磁性水膠複合微粒及其在藥物傳輸系統上之應用
    (2007) 曾志中; Chih-Chung Tseng
    近幾年來,奈米粒子-高分子複合材料由於分析和合成技術的進步,受到廣泛的研究及討論。超順磁性的FePt奈米粒子經由Cysteamine表面修飾轉為水相後,藉由 TEM、XRD和SQUID儀器鑑定其結構及性質沒有改變,界面電位顯示水相FePt奈米粒子帶正電,利用此表面性質以化學方法和溫感型水膠結合形成奈米粒子-高分子複合微粒,經TEM、XRD證實此複合微粒具有水膠及FePt奈米粒子,亦觀察到此複合微粒擁有孔洞可用來攜帶藥物。以DLS在溫度變化下觀察到複合微粒反覆以收縮或膨潤應答,表示此複合微粒仍保有水膠之性質。在藥物傳輸系統上之應用,我們設計了完整的流程探求FePt奈米粒子-水膠複合微粒乘載和釋放藥物的能力,並且利用溫度的差異控制藥物釋放的程度和效率。因此我們認為這種奈米粒子-高分子複合微粒在磁熱治療上極具潛力。
  • Item
    金奈米棒包覆二氧化矽與溫感型水膠與其在藥物傳輸上的應用
    (2006) 歐佳珍
    摘要 近年來,許多將無機奈米結構與生物系統相連接的材料已經陸續應用於生物醫學的領域。在本篇論文中,利用金奈米棒為模板,在金奈米棒外面包覆二氧化矽或者是聚合物。 在金奈米棒包覆二氧化矽的部份,我們成功合成出均勻二氧化矽包覆在金奈米棒的材料,並藉由完全溶解內部的金奈米棒來合成出具有中空性質的二氧化矽奈米膠囊,或是部份溶解內部金奈米棒,製備出內外為不同材料的中空二氧化矽奈米膠囊。 在金奈米棒包覆聚合物部份,我們合成出金奈米棒外面包覆一層溫感型水膠P(NIPAAm-co-AAc)。溫感型水膠在溫度高於其相轉移溫度時,會有去澎潤現象,而釋出內部的水分。利用這個性質,我們將藥物包覆於這個材料中,內部的金奈米棒可以吸收特定波長的雷射使溫度升高,當溫度高於水膠的相轉移溫度,即可達到藥物釋放的目的。 在此,我們選用兩種以上不同吸收波長的金奈米棒來合成這個材料,便可以利用不同波長的雷射來釋放不同的藥物。
  • Item
    兩性離子型水膠/蒙托土複合材料的合成和性質研究
    (2019) 袁通軒; Yuan, Tung-Shuian
    論文主要目的為製備兩種兩性離子型的水膠P(AM/SB) 和(P(AM/SB)/MMT)係使用丙烯醯胺、甲基丙烯酸二甲基丙基磺酸胺乙酯 (SB)和蒙托土為單體,經自由基反應合成,利用FT-IR作水膠結構鑑定,探討單體比例和蒙托土含量對於水膠在各種水溶液下吸水率的影響。 將P(AM/SB)/MMT水膠加到水泥漿和水泥砂漿中,作為自養護劑時,探討單體比例和蒙托土比例含量,對於水泥漿中水泥水化程度、圓盤裂縫和凝結時間的影響;以及對於水泥砂漿抗壓強度、內部濕度、乾縮量和自收縮量的影響。 研究結果顯示, P(AM/SB)/MMT水膠:當AM/SB= 8, APS= 0.5 mol%, MBA= 2.0 mol%, MMT = 10 wt%時,在純水中和Pore solution中的最大吸水率分別為28.3 g/g和54.0 g/g。 將P(AM/SB)/MMT水膠加入水泥砂漿中,當水膠劑量為0.2 wt%,粒徑為0.082 mm, 和蒙托土含量為10 wt%時,對水泥砂漿的抗壓強度和內部濕度增加、乾縮量減少、自收縮量減少和水泥漿的圓盤裂縫減低有最佳的提升效果。
  • Item
    兩性離子型水膠/爐石複合材料的合成和性質研究
    (2016) 林錦良; Lin, Jin-Liang
    本論文主要目的為製備兩種兩性離子型的吸水性水膠,Poly(acryl amide-co- sulfobetaine) P(AM/SB) 和Poly(acryl amide-co- sulfobetaine)/ Slag) (P(AM/SB)/SG),使用FT-IR作結構鑑定,探討單體比例、起始劑或交聯劑劑量、反應溫度和爐石含量對於水膠在各種水溶液下吸水率的影響。 將P(AM/SB)/SG水膠加到水泥漿和水泥砂漿中,作為自養護劑時,探討單體比例和爐石比例含量,對於水泥漿中水泥水化程度、圓盤裂縫和凝結時間的影響;以及對於水泥砂漿水份重量損失、抗壓強度、內部濕度和乾縮量的影響。 實驗結果顯示, P(AM/SB)水膠在純水中的最大吸水率為48.4 g/g,2.0M NaCl(aq) 和2.0M CaCl2(aq) 中的吸水率分別為55.7和61.2 g/g。 將P(AM/SB)/SG水膠加入水泥砂漿中,當水膠劑量為0.2 wt%,粒徑為0.082 mm, 和爐石含量為15 wt%時,對水泥砂漿的重量損失、抗壓強度和內部濕度增加、乾縮量減少和水泥漿的圓盤裂縫減低有最佳的提升效果。 關鍵字:兩性離子型、水膠、合成、爐石、砂漿、吸水率、抗壓強度、內部濕度、乾縮。