On the distribution of the leading statistics for the bounded deviated permutations
dc.contributor | 林延輯 | zh_TW |
dc.contributor | Yen-chi Lin | en_US |
dc.contributor.author | 簡維良 | zh_TW |
dc.contributor.author | Wei-Liang Chien | en_US |
dc.date.accessioned | 2019-09-05T01:11:23Z | |
dc.date.available | 2014-7-31 | |
dc.date.available | 2019-09-05T01:11:23Z | |
dc.date.issued | 2014 | |
dc.description.abstract | 本篇論文的研究目的是要在均勻分佈的假設下,探索bounded deviated permutations的第一位置統計量的分佈情形,而我們猜測其將為常態分佈。 定義好與第一位置統計量相關的隨機變數後,藉由考慮雙變數生成函數,我們可以計算此隨機變數的平均數和變異數,本篇論文將把這個方法應用在三個特殊的情形上。因為這個雙變數生成函數的係數並沒有closed form,在計算過程中,我們會使用Hayman's formula求其漸進式。最後,使用電腦計算,這三個特殊的情形確實收斂到常態分佈,證實了我們的猜測。 | zh_TW |
dc.description.abstract | The purpose of the thesis is to investigate the distribution of the leading statistic in the bounded deviated permutations S_{n+1}^{ℓ,r}, assuming the uniform distribution in S_{n+1}^{ℓ,r}. Define the random variable X_{n} to take the value k if π₁=k+1 for π=π₁π₂⋯π_{n+1}∈S_{n+1}^{ℓ,r}. By considering the bivariate generating function A(z,u), we could calculate the expected value and the standard deviation for X_{n}. The method is then applied to three specific cases, S_{n+1}^{1,2}, S_{n+1}^{1,3} and S_{n+1}^{2,2}. Since the coefficients λ_{n,k} of the bivariate generating function do not have a closed form, we will apply the Hayman method to get its asymptotic formula. Finally, by running computer programs, the convergence of the normal distribution on these three cases are verified. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | GN060140027S | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060140027S%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101712 | |
dc.language | 英文 | |
dc.subject | 有界偏差排列 | zh_TW |
dc.subject | 第一位置統計量 | zh_TW |
dc.subject | 常態分佈 | zh_TW |
dc.subject | 雙變數生成函數 | zh_TW |
dc.subject | quasi-powers 定理 | zh_TW |
dc.subject | Hayman's 公式 | zh_TW |
dc.subject | bounded deviated permutation | en_US |
dc.subject | leading statistic | en_US |
dc.subject | normal distribution | en_US |
dc.subject | bivariate generating function | en_US |
dc.subject | quasi-powers theorem | en_US |
dc.subject | Hayman’s method | en_US |
dc.title | On the distribution of the leading statistics for the bounded deviated permutations | zh_TW |
dc.title | On the distribution of the leading statistics for the bounded deviated permutations | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n060140027s01.pdf
- Size:
- 451.52 KB
- Format:
- Adobe Portable Document Format