一些跟circular cone有關的不等式

dc.contributor陳界山zh_TW
dc.contributorJein-Shan Chenen_US
dc.contributor.author洪浩峰zh_TW
dc.contributor.authorHao-Feng Hungen_US
dc.date.accessioned2019-09-05T01:10:39Z
dc.date.available2013-6-28
dc.date.available2019-09-05T01:10:39Z
dc.date.issued2013
dc.description.abstractThe circular cone is a pointed closed convex cone having hyperspherical sections orthogonal to its axis of revolution about which the cone is invariant to rotation. In this section, we establish some inequalities associated with circular cone, which we believe that they will be useful for further analyzing properties of $f^{\mathcal{L}_\theta}$ and proving the convergence of interior point methods for optimization problems involved in circular cones.zh_TW
dc.description.sponsorship數學系zh_TW
dc.identifierGN060040016S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060040016S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101694
dc.language中文
dc.subjectSecond-order conezh_TW
dc.subjectcircular conezh_TW
dc.subjectspectral factorizationzh_TW
dc.subjectdeterminantzh_TW
dc.subjecttracezh_TW
dc.title一些跟circular cone有關的不等式zh_TW
dc.titleSome inequalities associated with circular coneen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n060040016s01.pdf
Size:
128.62 KB
Format:
Adobe Portable Document Format

Collections