廣義FB函數與其merit函數的幾何觀點
dc.contributor | 陳界山 | zh_TW |
dc.contributor | Jein-Shan Chen | en_US |
dc.contributor.author | 蔡懷潁 | zh_TW |
dc.contributor.author | Huai-Yin Tsai | en_US |
dc.date.accessioned | 2019-09-05T01:17:20Z | |
dc.date.available | 2011-1-19 | |
dc.date.available | 2019-09-05T01:17:20Z | |
dc.date.issued | 2011 | |
dc.description.abstract | 在這篇論文,我們主要研究廣義FB函數與其merit函數的一些幾何性質.非線性互補問題可以化成等價的約束最小化問題. 利用曲線與曲面的觀點,我們能得到直觀的想法來分析descent演算法的收斂行為. 幾何觀點更進一步指出在merit函數的方法下如何設定參數以改良演算法. | zh_TW |
dc.description.abstract | In this paper, we study some geometric properties of generalized Fischer-Burmeister function, ϕp(a, b) = ∥(a, b)∥p − (a + b) where p ∈ (1,+∞), and the merit function ψp(a, b) induced from ϕp(a, b). It is well known that the nonlinear complemen-tarity problem (NCP) can be reformulated as an equivalent unconstrained minimization by means of merit functions involving NCP-functions. From the geometric view of curve and surface, we have more intuitive ideas about convergent behaviors of the descent algo-rithms that we use. Furthermore, geometric view indicates how to improve the algorithm to achieve our goal by setting proper value of the parameter in merit function approach. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | GN0698400056 | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0698400056%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101809 | |
dc.language | 英文 | |
dc.subject | 曲線 | zh_TW |
dc.subject | 曲面 | zh_TW |
dc.subject | 等高線 | zh_TW |
dc.subject | NCP函數 | zh_TW |
dc.subject | merit函數 | zh_TW |
dc.subject | Curvature | en_US |
dc.subject | surface | en_US |
dc.subject | level curve | en_US |
dc.subject | NCP-function | en_US |
dc.subject | merit function | en_US |
dc.title | 廣義FB函數與其merit函數的幾何觀點 | zh_TW |
dc.title | Geometric view of generalized Fischer-Burmeister function and its induced merit function | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n069840005601.pdf
- Size:
- 5.17 MB
- Format:
- Adobe Portable Document Format