廣義FB函數與其merit函數的幾何觀點

dc.contributor陳界山zh_TW
dc.contributorJein-Shan Chenen_US
dc.contributor.author蔡懷潁zh_TW
dc.contributor.authorHuai-Yin Tsaien_US
dc.date.accessioned2019-09-05T01:17:20Z
dc.date.available2011-1-19
dc.date.available2019-09-05T01:17:20Z
dc.date.issued2011
dc.description.abstract在這篇論文,我們主要研究廣義FB函數與其merit函數的一些幾何性質.非線性互補問題可以化成等價的約束最小化問題. 利用曲線與曲面的觀點,我們能得到直觀的想法來分析descent演算法的收斂行為. 幾何觀點更進一步指出在merit函數的方法下如何設定參數以改良演算法.zh_TW
dc.description.abstractIn this paper, we study some geometric properties of generalized Fischer-Burmeister function, ϕp(a, b) = ∥(a, b)∥p − (a + b) where p ∈ (1,+∞), and the merit function ψp(a, b) induced from ϕp(a, b). It is well known that the nonlinear complemen-tarity problem (NCP) can be reformulated as an equivalent unconstrained minimization by means of merit functions involving NCP-functions. From the geometric view of curve and surface, we have more intuitive ideas about convergent behaviors of the descent algo-rithms that we use. Furthermore, geometric view indicates how to improve the algorithm to achieve our goal by setting proper value of the parameter in merit function approach.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierGN0698400056
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0698400056%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101809
dc.language英文
dc.subject曲線zh_TW
dc.subject曲面zh_TW
dc.subject等高線zh_TW
dc.subjectNCP函數zh_TW
dc.subjectmerit函數zh_TW
dc.subjectCurvatureen_US
dc.subjectsurfaceen_US
dc.subjectlevel curveen_US
dc.subjectNCP-functionen_US
dc.subjectmerit functionen_US
dc.title廣義FB函數與其merit函數的幾何觀點zh_TW
dc.titleGeometric view of generalized Fischer-Burmeister function and its induced merit functionen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069840005601.pdf
Size:
5.17 MB
Format:
Adobe Portable Document Format

Collections