平面圖的平方著色數
dc.contributor | 郭君逸 | zh_TW |
dc.contributor.author | 王博賢 | zh_TW |
dc.date.accessioned | 2019-09-05T01:10:28Z | |
dc.date.available | 2014-7-12 | |
dc.date.available | 2019-09-05T01:10:28Z | |
dc.date.issued | 2014 | |
dc.description.abstract | 放電法(Discharging Method)最早在1977年,Appel使用來證明對於任何平面圖G,χ(G)≤4 (即四色定理)。而Heuvel等人在1999年,使用放電法證明了χ(G^2 )≤2"Δ"+25。在我們這篇論文中,將此上界降低至2"Δ"+10,加上涵蓋了前人的一些結果,我們並將這個結果推廣到λ(G;p,q)≤(4q-2)"Δ"+10p+8q-9。 | zh_TW |
dc.description.abstract | Discharging method was proposed in 1977 by Appel and Haken, he used it to prove that for any planar graph G, χ(G)≤4, that is well-known 4-Color Theorem. Heuvel et al. used discharging method to prove χ(G^2 )≤2"Δ"+25 in1999. In this paper, we reduce this upper bound to 2"Δ"+10 and also generalize the result to λ(G;p,q)≤(4q-2)"Δ"+10p+8q-9. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | GN060040007S | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060040007S%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101690 | |
dc.language | 中文 | |
dc.subject | 平面圖 | zh_TW |
dc.subject | 著色數 | zh_TW |
dc.subject | 圖的標號 | zh_TW |
dc.subject | 放電法 | zh_TW |
dc.subject | planar graph | en_US |
dc.subject | chromatic number | en_US |
dc.subject | labeling of a graph | en_US |
dc.subject | discharging | en_US |
dc.title | 平面圖的平方著色數 | zh_TW |
dc.title | The Chromatic Number of the Square of a Planar Graph | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n060040007s01.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format