Geometric flows for elastic functionals of curves and the applications

dc.contributor林俊吉zh_TW
dc.contributorLin, Chun-Chien_US
dc.contributor.authorTran The Dungzh_TW
dc.contributor.authorTran The Dungen_US
dc.date.accessioned2023-12-08T07:56:02Z
dc.date.available2024-08-01
dc.date.available2023-12-08T07:56:02Z
dc.date.issued2022
dc.description.abstractNonezh_TW
dc.description.abstractIn this thesis, the method of geometric flow is applied to prove the existence of global solutions to the problem of nonlinear spline interpolations for closed/non-closed curves and the problem of area-constrained planar elasticae with free boundaries on a straight line. Among them, this method applies the theory of either fourth-order parabolic PDEs/PDE or second-order parabolic PDEs/PDE with certain imposed boundary conditions. The results of this study demonstrate the existence of global solutions and sub-convergence of the elastic flow. Furthermore, the geometric flow method provides a new approach to the problem of nonlinear spline interpolations.en_US
dc.description.sponsorship數學系zh_TW
dc.identifier80440005S-41744
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/a2d6c7611508b98bb265fcf864b9a20e/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121120
dc.language英文
dc.subjectNonezh_TW
dc.subjectGeometric flowen_US
dc.subjectelastic flowen_US
dc.subjectfourth-order parabolic equationen_US
dc.subjectsecond-order parabolic equationen_US
dc.subjectelastic splineen_US
dc.subjectspline interpolationen_US
dc.subjectcurve fittingen_US
dc.subjectpath planningen_US
dc.subjectfree boundary problemen_US
dc.subjectcontact anglesen_US
dc.subjectHolder spacesen_US
dc.titleGeometric flows for elastic functionals of curves and the applicationszh_TW
dc.titleGeometric flows for elastic functionals of curves and the applicationsen_US
dc.typeetd

Files

Collections