關於變分不等式的輔助問題原理

dc.contributor朱亮儒zh_TW
dc.contributorLiang-Ju Chuen_US
dc.contributor.author蔡佩旻zh_TW
dc.contributor.authorPei-Min Tsaien_US
dc.date.accessioned2019-09-05T01:04:09Z
dc.date.available2003-07-01
dc.date.available2019-09-05T01:04:09Z
dc.date.issued2002
dc.description.abstract輔助問題原理允許我們藉由解決輔助問題的一個數列去尋找最佳化的問題(例如:最小化問題,鞍點問題,變分不等式問題,...等)的解。 根據 Cohen 的輔助問題原理,我們介紹並分析一個演算法來解決一般性的變分不等式 VI(T,C)問題。 為了解決關於一般的非單調算子在自反的巴那赫空間中多值的變分不等式問題,所以在這篇文章裡,近似方法的觀念被介紹而且一個收斂的演算法也被提出。而我們文章的目標就是為了輔助問題原理去建立類似的連結。事實上,這篇論文的要旨有兩層: (1)一般化單調算子的條件之下,以輔助問題原理為基礎, 我們處理演算法的收斂性,例如: pseudo-Dunn property,強偽單調性,$alpha$-強偽單調性,...等。 (2)我們提出一個修改的演算法,在一個缺乏強單調性質的輔助函數條件之下,來解決變分不等式的解之收斂性。zh_TW
dc.description.abstractThe auxiliary problem principle allows us to find the solution of an optimization problem (minimization problem, saddle-point problem, variational inequality problem, etc.) by solving a sequence of auxiliary problem. Following the auxiliary problem principle of Cohen, we introduce and analyze an algorithm to solve the usual variational inequality VI(T,C). In this paper, the concept of proximal method is introduced and a convergent algorithm is proposed for solving set-valued variational inequalities involving nonmonotone operators in reflexive Banach spaces. The aim of our work is to establish similar links for the auxiliary problem principle. In fact, the purpose of this paper has two folds : (1) We first deal with the convergence of algorithm based on the auxiliary problem principle under generalized monotonicity, such as, pseudo-Dunn property, strong pseudomonotonicity, $alpha$-strong pseudomonotonicity, etc. (2) We present a modified algorithm for solving our variational inequalities under a weaker condition on the auxiliary function without strong monotonicity.en_US
dc.description.sponsorship數學系zh_TW
dc.identifier90NTNU1567021
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%2290NTNU1567021%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101444
dc.language中文
dc.subjectkwc 變分不等式zh_TW
dc.subject近似點方法zh_TW
dc.subject輔助問題原理zh_TW
dc.subject偽單調算子zh_TW
dc.subject強偽單調算子zh_TW
dc.subject(lzh_TW
dc.subjectw)-上半連續zh_TW
dc.subject(wzh_TW
dc.subjects)-上半連續zh_TW
dc.subjectkwe variational inequalityen_US
dc.subjectproximal point algorithmen_US
dc.subjectauxiliary principle problemen_US
dc.subjectpseudomonotoneen_US
dc.subjectstrongly pseudomonotoneen_US
dc.subjectpseudo-Dunn propertyen_US
dc.subject(len_US
dc.subjectw)-u.s.c.en_US
dc.subject(wen_US
dc.subjects)-u.s.c.en_US
dc.title關於變分不等式的輔助問題原理zh_TW

Files

Original bundle

Now showing 1 - 4 of 4
No Thumbnail Available
Name:
56702101.pdf
Size:
107.82 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
56702102.pdf
Size:
110.65 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
56702103.pdf
Size:
135.08 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
56702104.pdf
Size:
113.55 KB
Format:
Adobe Portable Document Format

Collections