含十六族 (硫、硒、碲) 與過渡金屬 (錳、鐵、銅、汞) 團簇化合物之反應性、電化學、電子吸收光譜及理論計算

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

1. S/Mn/CO 系統之研究 利用 S powder 與 Mn2(CO)10 以莫耳比 2:1於 1 M 或 7 M 之 KOH/MeOH 溶液中反應,可分別得到 [S2Mn3(CO)9]─ (1) 及 [HS2Mn3(CO)9]2─ (2)。若將莫耳比改為 5:1 於 4 M 之鹼性溶液中,則生成多硫之錳錯合物 [Mn3(CO)9(-S2)2(-HS)]2─ (3)。此外,團簇物 1 可於 鹼性溶液中與 CO 或 S powder 反應轉換成錯合物 2 及 3。而團簇物 2 也可藉由加入 [Cu(MeCN)4]BF4 進行氧化反應轉換回團簇物 1 並伴隨氫氣生成,或於高溫下與 S powder 反應可形成錯合物 3。反之,錯合物 3 轉換回 2 則需於鹼性條件下外加 Mn2(CO)10 而成。有趣的是,若團簇物 2與 S powder 的反應改置於室溫下,可意外得到另一錯合物 [HMn3(CO)9(-S2)2(-S)]2─ (4)。錯合物 3 及 4 為同分異構物,且動力學產物 4 可經由加熱轉換成熱力學產物 3。除此之外,錯合物 3 也可與不同氧化試劑 (例如:MeI、CH2Cl2、Mn(CO)5Br、[Cu(MeCN)4]BF4) 反應,生成氧化物 [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5)、[{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6)、[S5Mn4(CO)12]2─ (7) 及 [S4Mn3(CO)10]─ (8)。上述化合物之生成、轉換及電化學亦藉由理論計算進一步驗證。 2. E/Fe/CO (E = S, Se, Te) 系統之研究 將一維含 Cu 聚合物 [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) 與含十六族混合 Hg 與 Fe 羰基團簇物 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]) 以莫耳比 2: 1 混合,利用液體輔助機械研磨方式 (liquid-assisted grinding, LAG) 分別可得到一維聚合物 [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (4)及 [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (5c);於相似條件下,當若將聚合物 1 與 [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) 或 [Et4N]2[2c] 及 dpy 以莫耳比 2:1:0.5 進行研磨,可生成混合一維及二維骨幹之陰陽離子聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, Te)。此外,固態電子吸收光譜顯示 3、4、5b 及 5c 皆具有半導體性質,其能隙落在 1.36 ~ 1.67 eV 之間。再者,此系列聚合物之生成及光學性質進一步藉由理論計算佐證。 關鍵字: 團簇物、硫、硒、碲、錳、鐵、銅、汞
1. S/Mn/CO System The reactions of S powder with Mn2(CO)10 in a molar ratio of 2: 1 in 1 M or 7 M KOH/MeOH solutions led to the formation of clusters [S2Mn3(CO)9]─ (1) and [HS2Mn3(CO)9]2─ (2), respectively. If the molar ratio was changed to 5: 1 in 4 M KOH/MeOH solutions, the sulfur-rich manganese complex [Mn3(CO)9(-S2)2(-HS)]2─ (3) was produced. Cluster 1 could be converted into 2 or 3 by the treatment with CO or S powder in KOH/MeOH solutions. Cluster 2 could also react with S powder at high temperature or [Cu(MeCN)4]BF4 to transform into 3 and 1, while 3 was reconverted into 2 by the treatment with Mn2(CO)10 in KOH/MeOH solutions. Interestingly, if the reaction temperature of cluster 2 with S powder was changed to room temperature, the other complex [HMn3(CO)9(-S2)2(-S)]2─ (4) was formed. Complexes 3 and 4 were structural isomers upon heating kinetic product 4 could isomerize to the thermodynamic product 3. On the other hand, complex 3 could react with various oxidizing agents such as MeI, CH2Cl2, Mn(CO)Br, and [Cu(MeCN)4]BF4 to form complexes [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5), [{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6), [S5Mn4(CO)12]2─ (7), and [S4Mn3(CO)10]─ (8). The nature, transformation, reactivity, and electrochemical property of the resultant complexes are discussed and elucidated by DFT calculations. 2. E/Fe/Cu/Hg/CO (E = S, Se, Te) System When 1D polymer [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) and chalcogen-containing mixed Fe─Hg carbonyl clusters, [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]), were grinded in a molar ratio of 2: 1 via liquid-assisted grinding (LAG) method, two 1D polymers [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (3) and [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (4) were formed, respectively. In addition, the grinding of 1, [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) or [Et4N]2[2c], and dpy in a 2: 1: 0.5 ratio led to the formation of the mixed 1D and 2D cation-anion polymers [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, 5b; Te, 5c). Besides, the optical reflectance spectrum measurements showed that the band gaps of 3, 4, 5b, and 5c exhibited semi-conducting properties in the range of 1.36-1.67 eV . Furthermore, the formation and the optical properties are elucidated by DFT calculations. Keyword: cluster、S、Se、Te、Mn、Fe、Cu、Hg

Description

Keywords

團簇物, , , , , , , , cluster, S, Se, Te, Mn, Fe, Cu, Hg

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By