時空資料預測模型-以臺北捷運為例

dc.contributor程毅豪zh_TW
dc.contributor呂翠珊zh_TW
dc.contributorChen, Yi-Hauen_US
dc.contributorLu, Tsui-Shanen_US
dc.contributor.author張維倫zh_TW
dc.contributor.authorChang, Wei-Lunen_US
dc.date.accessioned2023-12-08T07:55:55Z
dc.date.available2022-08-29
dc.date.available2023-12-08T07:55:55Z
dc.date.issued2022
dc.description.abstract臺北捷運發展至今已成為大臺北地區重要的公共運輸工具之一,對各站進出旅客人數數據進行建模可以有效預測以便決策管理。然而,各站進出人數受到空間、時間以及環境等因素影響;重複時空自我回歸模型(Keunseo Kim, Vinnam Kim and Heeyoung Kim,2019)是針對航空旅客流量較好的預測模型。本研究利用臺北捷運2019年共計12個月119個車站為目標蒐集起訖站客流量,並以臺北各地區人口數作為影響因素,透過R程式語言編寫出一套演算法建立出模型。zh_TW
dc.description.abstractThe development of Taipei MRT has become one of the important public transportation tools in Taipei area. Modeling the number of passengers entering and leaving each station can effectively predict and facilitate decision-making. However, this data is affected by factors such as space, time, and environment; the replicated spatiotemporal autoregressive model (Keunseo Kim, Vinnam Kim and Heeyoung Kim, 2019) is a better prediction model for air passenger flow. This research uses the passenger OD flow data of 119 Taipei MRT stations each month in 2019 and the population of each area in Taipei as the influencing factor to build a model by R programming algorithms.en_US
dc.description.sponsorship數學系zh_TW
dc.identifier60840025S-42110
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/ca24ef9313bc8fa32ea6ed37dfe455fb/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121085
dc.language中文
dc.subject捷運zh_TW
dc.subject起訖點流量zh_TW
dc.subject重複時空自我回歸模型zh_TW
dc.subjectMRTen_US
dc.subjectOD flowsen_US
dc.subjectreplicated spatiotemporal autoregressive modelen_US
dc.title時空資料預測模型-以臺北捷運為例zh_TW
dc.titleSpatiotemporal data prediction model – A Case Study on Taipei MRT Systemen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202200042110-104420.pdf
Size:
943.27 KB
Format:
Adobe Portable Document Format
Description:
etd

Collections