線型與星型鈍化劑對鹵化鈰鈣鈦礦之協同鈍化效應

dc.contributor李君婷zh_TW
dc.contributorLi, Chun-Tingen_US
dc.contributor.author陳姿佑zh_TW
dc.contributor.authorChen,Tzu-Yuen_US
dc.date.accessioned2025-12-09T08:10:11Z
dc.date.available2027-09-01
dc.date.issued2025
dc.description.abstract本研究成功合成一種具有鉛取代潛力、空氣穩定性佳,且具電化學耐久性的鈰基鹵化物鈣鈦礦材料,其組成為CC/6mna/(FA0.8MA0.2)3Ce1-xGexI6,為提升薄膜品質與光電性能,本研究引入兩種三苯甲烷類有機染料—結晶紫(CV)與甲基綠(MG)—作為路易士鹼表面鈍化劑。兩者皆為副玫瑰苯胺(pararosaniline)衍生結構染料,具備良好的共軛性,可與 Ce3+離子形成穩定配位,有效提升鈣鈦礦薄膜的表面穩定性。此鈣鈦礦薄膜可直接用作染料敏化太陽能電池對電極材料,為低成本且具潛力的電催化材料候選者。本研究採用兩階段乾燥與退火製程(150 °C 乾燥 2 小時,後續於 200 °C 快速退火 1 分鐘),並可在高濕環境下(相對濕度>75%)穩定製備高品質薄膜。透過掃描式電子顯微鏡(SEM)、X 光光電子能譜(XPS)、粉末 X 光繞射(PXRD)、紫外光電子能譜(UPS)及電化學阻抗分析(EIS)等技術進行系統性結構與電性分析。結果顯示,CV 鈍化薄膜具有緻密片狀形貌、較強的 Ce–I 鍵結與更佳能階排列,對應元件效率可達 9.26%,優於 MG 薄膜之非晶相結構的電性表現。進一步透過雙鈍化劑策略(CV + 4,4'-Bpy)可進一步改善表面配位強度、降低 Ce–O 含量與表面缺陷,並明顯提升開路電壓與短路電流,使 DSSC 效率達到10.85%,超越傳統白金對電極所達成之效能。EIS 顯示 CV + 4,4'-Bpy 組合具最低電荷轉移電阻(Rct = 5.11 Ω cm2),具有優異界面導電性。本研究顯示,藉由分子結構設計與鈍化策略,鈰基鈣鈦礦電極不僅具鉛替代潛力,亦可望應用於高效、環境友善之太陽能與電化學系統。zh_TW
dc.description.abstractThe Ce-based perovskite electrode, stable under oxygen-rich conditions, consists of carbon cloth (CC)/6-mercaptonicotinic acid (6mna)/(FA0.8MA0.2)3Ce1-xGexI6 and is passivated with two triphenylmethane-derived organic dyes, crystal violet (CV) and methyl green (MG). These cationic dyes are structural derivatives of pararosaniline, featuring conjugated aromatic backbones and electron-donating amino groups, which facilitate Lewis base coordination with Ce³⁺ and enhance surface stabilization. The resulting perovskite electrodes were employed as electrocatalytic counter electrodes in dye-sensitized solar cells (DSSCs), where they effectively improved device performance by enhancing interfacial stability and catalytic activity. The perovskite thin films were fabricated via a two-stage drying process under ambient air with high humidity, and characterized using SEM, XPS, PXRD, UPS, and EIS techniques. Results showed that CV-passivated films exhibited dense, flake-like morphologies and improved Ce–I bonding, leading to better photovoltaic performance than MG-passivated films. Moreover, the dual-passivation strategy with CV + 4,4'-Bpy significantly enhanced interfacial coordination, reduced Ce–O content, and improved the energy level alignment, resulting in the highest cell efficiency of 10.85%, exceeding that of the traditional Pt-based counter electrode. Electrochemical impedance spectroscopy confirmed that the lowest charge transfer resistance (Rct = 5.11 Ω cm2) was achieved with CV + 4,4'-Bpy, indicating superior interfacial conductivity despite its limited bulk crystallinity. These findings demonstrate that Ce-based halide perovskites, when properly passivated with suitable Lewis-base additives, can serve as promising and sustainable alternatives for electrochemical and photovoltaic applications.en_US
dc.description.sponsorship化學系zh_TW
dc.identifier61242085S-48336
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/e307dfd8a557445c2cbb6c3f805edc09/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125461
dc.language英文
dc.subject鈰金屬鈣鈦礦zh_TW
dc.subject電催化劑zh_TW
dc.subject表面鈍化zh_TW
dc.subject副玫瑰苯胺zh_TW
dc.subjectCe-based perovskiteen_US
dc.subjectElectro-catalysten_US
dc.subjectSurface passivationen_US
dc.subjectTriphenylmethane dyesen_US
dc.subjectPararosanilineen_US
dc.title線型與星型鈍化劑對鹵化鈰鈣鈦礦之協同鈍化效應zh_TW
dc.titleSynergistic Passivation Effect of Linear and Star Shaped Surfactants on Cerium Halide Perovskite Electrocatalystsen_US
dc.type學術論文

Files

Collections