在完備黎曼流形上針對熱方程的哈納克不等式

dc.contributor陳瑞堂zh_TW
dc.contributorJui-Tang Chenen_US
dc.contributor.author張舜為zh_TW
dc.contributor.authorShun-Wei Changen_US
dc.date.accessioned2019-09-05T01:18:11Z
dc.date.available2012-7-23
dc.date.available2019-09-05T01:18:11Z
dc.date.issued2012
dc.description.abstract設 M 是一個光滑且連通的完備非緊緻黎曼流形. 若 M 滿足體積倍增條件和弱 L2 龐加萊不等式的話, 則針對底律雷特熱方程正解的哈納克不等式成立. 本論文主要探討這個定理. 基本上, 本論文可分成四個部分. 第一部分討論具有體積倍增條件和弱 L2 龐加萊不等式的流形上的一些重要性質. 第二部分則利用這些性質證明納許不等式和索伯列夫不等式. 第三部分著重在底律雷特熱方程的 subsolutions 和 supersolutions 並分別從這兩種類型的解中萃取出均值不等式及逆赫爾德不等式. 最後一部分則運用了在前三個部份中所獲得的工具來完成本論文主要定理的證明.zh_TW
dc.description.abstractLet M be a smooth connected complete non-compact Riemannian manifold. If M satisfies the volume doubling condition (VDC) and the weak L2 Poincaré inequality (WPI), then the Harnack inequality for positive solutions to the Dirchlet heat equation holds on M. This is the main theorem in this paper. Basically, This paper can be seperated into four part. The first part discusses some important and useful properties on the manifold equipped with both VDC and WPI. The second part utilizes those properties to establish the Nash inequality and the Sobolev inequality. The third part focuses on subsolutions and supersolutions to the Dirichlet heat equation, and extracts the mean value inequality and the reverse Hölder inequality from them respectively. The last part applies all the tools obtained in previous parts to show the proof of the main theorem in this paper.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierGN0699400089
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699400089%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101825
dc.language英文
dc.subject哈納克不等式zh_TW
dc.subject體積倍增條件zh_TW
dc.subjects-型覆蓋zh_TW
dc.subject惠特尼型覆蓋zh_TW
dc.subject弱 L2 龐加萊不等式zh_TW
dc.subject加權龐加萊不等式zh_TW
dc.subject納許不等式zh_TW
dc.subject索伯列夫不等式zh_TW
dc.subject底律雷特熱方程zh_TW
dc.subject均值不等式zh_TW
dc.subject反向赫爾德不等式zh_TW
dc.subject莫澤迭代法zh_TW
dc.subjectHarnack inequalityen_US
dc.subjectvolume doubling conditionen_US
dc.subjects-packing coveringen_US
dc.subjectWhitney type coveringen_US
dc.subjectweak L2 Poincaré inequalityen_US
dc.subjectweighted Poincaré inequalityen_US
dc.subjectNash inequalityen_US
dc.subjectSobolev inequalityen_US
dc.subjectDirichlet heat equationen_US
dc.subjectmean value inequalityen_US
dc.subjectreverse Hölder inequalityen_US
dc.subjectMoser 's iterationen_US
dc.title在完備黎曼流形上針對熱方程的哈納克不等式zh_TW
dc.titleHarnack Inequality for The Heat Equation on A Complete Riemannian Manifolden_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069940008901.pdf
Size:
660.96 KB
Format:
Adobe Portable Document Format

Collections