Bayesian evaluation of response styles in polytomous data with multiple group factor analysis model

dc.contributor蔡蓉青zh_TW
dc.contributorTsai, Rung-Chingen_US
dc.contributor.author賴驥緯zh_TW
dc.contributor.authorLai, Chi-Weien_US
dc.date.accessioned2019-09-05T01:06:07Z
dc.date.available2016-07-27
dc.date.available2019-09-05T01:06:07Z
dc.date.issued2016
dc.description.abstract本研究之主要目的在於檢定態度量表中,作答者是否受到作答風格而影響問卷之作答,即兩群人是否有作答風格之差異。所謂作答風格乃是當潛在態度相同的兩位作答者可能會因為作答風格的差異,而做出不同的回答。本研究利用了多群組離散型驗證性因素分析模型來分析多群組的有序分類數據,其中利用貝氏估計在最小限制式的條件下,來估計模型中的閾值、潛在因子的平均與變異數以及因素負荷量等結構參數,並且使用Gibbs sampling來估計這些參數的聯合分配。再利用貝氏因子來檢驗李克氏五點量表在兩群組間是否存在作答風格差異。於本研究中,透過模擬所得之結果顯示,貝氏因子可用來檢定極端、默認肯定及默認否定等作答風格。本研究中分析「1998 年國際資訊科技教育應用研究 (SITES 1998)」之跨國五點量表問卷,選取其中來自法國及義大利的作答者,分析對於資訊融入教學的學習成效認同程度。其中,義大利的作答者相對於法國之作答者具有默認肯定之作答風格。zh_TW
dc.description.abstractThe main purpose of this study is to use Bayesian estimation and Bayes factor to test for response styles in polytomous data using multiple group categorical confirmatory factor analysis model. Joint Bayesian estimates of the thresholds, the factor means and variances, as well as the factor loadings using Gibbs sampling are proposed subjected to some minimal identifiability constraints. Bayes factor is used to test hypotheses of different types of response styles with their corresponding inequality constraints among the thresholds. Our simulation studies show that Bayes factor is effective in testing for different types of response styles. Analysis of an international comparative research suggests that Italy, despite having similar mean attitude, exhibits the acquiescent response style on how much they think information and communication technology improve the student's achievement or ability compared to France.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060340024S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060340024S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101555
dc.language英文
dc.subject作答風格zh_TW
dc.subject態度量表zh_TW
dc.subject多群組離散型因素分析模型zh_TW
dc.subject貝氏估計zh_TW
dc.subject貝氏因子zh_TW
dc.subjectLikert scaleen_US
dc.subjectresponse styleen_US
dc.subjectBayesian estimationen_US
dc.subjectBayes factoren_US
dc.subjectinequality constrained hypothesesen_US
dc.titleBayesian evaluation of response styles in polytomous data with multiple group factor analysis modelzh_TW
dc.titleBayesian evaluation of response styles in polytomous data with multiple group factor analysis modelen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060340024s01.pdf
Size:
977.55 KB
Format:
Adobe Portable Document Format

Collections