以自組裝攜帶型人體呼氣感測裝置對人體各種狀態下的呼吸商進行探討
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究使用氣體感測器為基礎,結合LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)電腦語言程式及獨創的氣哨聲波技術,成功開發出一款新型的攜帶式人體呼氣感測裝置,此裝置不只能對環境的氧氣及二氧化碳進行即時監測,還能對人體呼氣進行分析,本研究突破了以往大多數氣體分析實驗中須使用龐大且昂貴的氣象層析質譜儀的限制,人體呼氣感測裝置不只具有體積小且價格合理的優點,同時具備測量精準、操作簡單、不受環境限制及非侵入式設計等優勢,讓人體呼氣感測裝置在未來有相當大的發展空間。
在人體呼氣實驗中對受試者各種狀態下的呼吸商(respiratory quotient,RQ)進行探討,其中包含正常狀態、睡眠狀態(正常睡眠、午睡、失眠與賴床)及運動狀態(有氧運動與無氧運動),發現人體在睡眠狀態時,呼吸商大幅降低且隨著睡眠深度改變呈現三階段變化,而人體在有氧運動狀態時呼吸商呈S形線性下降,在無氧運動狀態時則小幅度上升,這些趨勢證明呼吸商與身體狀態具備高度關連性,使用人體呼氣感測裝置檢測呼吸商能作為判斷身體狀況的依據。
In this study, we used a gas sensor as the basis, in conjunction with the LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)computer language program and the original whistle sound wave technology, successfully developed a portable human breath sensing device. This device is not only used in the concentration measurement of the environment, but also used to analyze human breath. We break through the limitation of using large and expensive gas chromatography mass spectrometry in most gas analysis experiments. The advantage of human breath sensing device is small size, reasonable price, accurate measurement, simple operation and without the limitation of environment. In the human breath experiment, the respiratory quotient of the subject under various states was explored. It was found that when human is in sleep state, the respiratory quotient is greatly reduced and presents a three-stage change according to sleep depth. We also found that the respiratory quotient decreases as an S-shape during aerobic exercise and increases slightly during anaerobic exercise.
In this study, we used a gas sensor as the basis, in conjunction with the LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)computer language program and the original whistle sound wave technology, successfully developed a portable human breath sensing device. This device is not only used in the concentration measurement of the environment, but also used to analyze human breath. We break through the limitation of using large and expensive gas chromatography mass spectrometry in most gas analysis experiments. The advantage of human breath sensing device is small size, reasonable price, accurate measurement, simple operation and without the limitation of environment. In the human breath experiment, the respiratory quotient of the subject under various states was explored. It was found that when human is in sleep state, the respiratory quotient is greatly reduced and presents a three-stage change according to sleep depth. We also found that the respiratory quotient decreases as an S-shape during aerobic exercise and increases slightly during anaerobic exercise.
Description
Keywords
氣體感測器, 人體呼氣, 呼吸商, 氧氣, 二氧化碳