Groebner Bases和Corner Elements的應用:計算Colon Ideals
dc.contributor | 劉容真 | zh_TW |
dc.contributor.author | 李承修 | zh_TW |
dc.date.accessioned | 2019-09-05T01:18:20Z | |
dc.date.available | 2013-7-2 | |
dc.date.available | 2019-09-05T01:18:20Z | |
dc.date.issued | 2013 | |
dc.description.abstract | For every even integer n=2k, let q_n be the ideal<x^{2n},y^{2n},(xy+z^2)^n,z^n> in the polynomial ring R=Q[x,y,z]. In her master's thesis [Y], Yao gives a Groebner basis G for q_n and proves that q_n+I_n contain in (q_n:m), where m is the maximal ideal <x,y,z> of R and I_n is the monomial ideal (x^k)(y^k)(z^{2k-1})<x^{2k},y^{2k}><x,y>^{k-1} of R. In this thesis, we prove that (q_n:m) and q_n+I_n are indeed equal. In the process of proving this equality, we give a Groebner basis for the ideals q_n+I_n and find the corner elements of the monomial ideal <LM(q_n)>. | zh_TW |
dc.description.abstract | For every even integer n=2k, let q_n be the ideal<x^{2n},y^{2n},(xy+z^2)^n,z^n> in the polynomial ring R=Q[x,y,z]. In her master's thesis [Y], Yao gives a Groebner basis G for q_n and proves that q_n+I_n contain in (q_n:m), where m is the maximal ideal <x,y,z> of R and I_n is the monomial ideal (x^k)(y^k)(z^{2k-1})<x^{2k},y^{2k}><x,y>^{k-1} of R. In this thesis, we prove that (q_n:m) and q_n+I_n are indeed equal. In the process of proving this equality, we give a Groebner basis for the ideals q_n+I_n and find the corner elements of the monomial ideal <LM(q_n)>. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | GN0699400120 | |
dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699400120%22.&%22.id.& | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101828 | |
dc.language | 中文 | |
dc.subject | 計算colon ideals | zh_TW |
dc.title | Groebner Bases和Corner Elements的應用:計算Colon Ideals | zh_TW |
dc.title | An Application of Groebner Bases and Corner Elements : Computing Colon Ideals | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n069940012001.pdf
- Size:
- 353.89 KB
- Format:
- Adobe Portable Document Format