Groebner Bases和Corner Elements的應用:計算Colon Ideals

dc.contributor劉容真zh_TW
dc.contributor.author李承修zh_TW
dc.date.accessioned2019-09-05T01:18:20Z
dc.date.available2013-7-2
dc.date.available2019-09-05T01:18:20Z
dc.date.issued2013
dc.description.abstractFor every even integer n=2k, let q_n be the ideal<x^{2n},y^{2n},(xy+z^2)^n,z^n> in the polynomial ring R=Q[x,y,z]. In her master's thesis [Y], Yao gives a Groebner basis G for q_n and proves that q_n+I_n contain in (q_n:m), where m is the maximal ideal <x,y,z> of R and I_n is the monomial ideal (x^k)(y^k)(z^{2k-1})<x^{2k},y^{2k}><x,y>^{k-1} of R. In this thesis, we prove that (q_n:m) and q_n+I_n are indeed equal. In the process of proving this equality, we give a Groebner basis for the ideals q_n+I_n and find the corner elements of the monomial ideal <LM(q_n)>.zh_TW
dc.description.abstractFor every even integer n=2k, let q_n be the ideal<x^{2n},y^{2n},(xy+z^2)^n,z^n> in the polynomial ring R=Q[x,y,z]. In her master's thesis [Y], Yao gives a Groebner basis G for q_n and proves that q_n+I_n contain in (q_n:m), where m is the maximal ideal <x,y,z> of R and I_n is the monomial ideal (x^k)(y^k)(z^{2k-1})<x^{2k},y^{2k}><x,y>^{k-1} of R. In this thesis, we prove that (q_n:m) and q_n+I_n are indeed equal. In the process of proving this equality, we give a Groebner basis for the ideals q_n+I_n and find the corner elements of the monomial ideal <LM(q_n)>.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierGN0699400120
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699400120%22.&%22.id.&amp;
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101828
dc.language中文
dc.subject計算colon idealszh_TW
dc.titleGroebner Bases和Corner Elements的應用:計算Colon Idealszh_TW
dc.titleAn Application of Groebner Bases and Corner Elements : Computing Colon Idealsen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069940012001.pdf
Size:
353.89 KB
Format:
Adobe Portable Document Format

Collections