關於對角型同餘方程及其在最佳衝突迴避碼存在性上的應用

dc.contributor夏良忠zh_TW
dc.contributorHsia, Liang-Chungen_US
dc.contributor.author蔡東峻zh_TW
dc.contributor.authorTsai, Tung-Chunen_US
dc.date.accessioned2025-12-09T08:11:42Z
dc.date.available2025-07-31
dc.date.issued2025
dc.description.abstractNonezh_TW
dc.description.abstractLet p be an odd prime, and let H = ⟨-1,2⟩ be the multiplicative subgroup of Z_p^× generated by −1 and 2. Define l₀ = [Z_p^× ∶ H], the index of H in Z_p^×, and suppose that l₀ = 2q, where q is an odd prime. In this paper, we prove that there exists a generator g ∈ Z_p^× such that the diagonal equation 1+gx^(l₀ )=g^2 y^(l₀). has a solution over Zp. This equation plays a crucial role in the construction of optimal conflict-avoiding codes (optimal CACs) of length p and weight 3, which ensure collisionfree communication in time-slotted multiple-access systems. Our proof is based on the properties of Jacobi sums and cyclotomic numbers.en_US
dc.description.sponsorship數學系zh_TW
dc.identifier61140007S-47741
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/c65871db4feeca031b1973f29a5ab906/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125506
dc.language英文
dc.subjectnonezh_TW
dc.subjectConflict-avoiding codesen_US
dc.subjectDiagonal congruence equationsen_US
dc.subjectFinite fieldsen_US
dc.subjectJacobi sumsen_US
dc.subjectCyclotomic numbersen_US
dc.title關於對角型同餘方程及其在最佳衝突迴避碼存在性上的應用zh_TW
dc.titleDiagonal Congruence Equation with Application to the Existence of Optimal Conflict Avoiding Codesen_US
dc.type學術論文

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202500047741-110064.pdf
Size:
236.62 KB
Format:
Adobe Portable Document Format
Description:
學術論文

Collections