關於對角型同餘方程及其在最佳衝突迴避碼存在性上的應用
| dc.contributor | 夏良忠 | zh_TW |
| dc.contributor | Hsia, Liang-Chung | en_US |
| dc.contributor.author | 蔡東峻 | zh_TW |
| dc.contributor.author | Tsai, Tung-Chun | en_US |
| dc.date.accessioned | 2025-12-09T08:11:42Z | |
| dc.date.available | 2025-07-31 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | None | zh_TW |
| dc.description.abstract | Let p be an odd prime, and let H = ⟨-1,2⟩ be the multiplicative subgroup of Z_p^× generated by −1 and 2. Define l₀ = [Z_p^× ∶ H], the index of H in Z_p^×, and suppose that l₀ = 2q, where q is an odd prime. In this paper, we prove that there exists a generator g ∈ Z_p^× such that the diagonal equation 1+gx^(l₀ )=g^2 y^(l₀). has a solution over Zp. This equation plays a crucial role in the construction of optimal conflict-avoiding codes (optimal CACs) of length p and weight 3, which ensure collisionfree communication in time-slotted multiple-access systems. Our proof is based on the properties of Jacobi sums and cyclotomic numbers. | en_US |
| dc.description.sponsorship | 數學系 | zh_TW |
| dc.identifier | 61140007S-47741 | |
| dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/c65871db4feeca031b1973f29a5ab906/ | |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125506 | |
| dc.language | 英文 | |
| dc.subject | none | zh_TW |
| dc.subject | Conflict-avoiding codes | en_US |
| dc.subject | Diagonal congruence equations | en_US |
| dc.subject | Finite fields | en_US |
| dc.subject | Jacobi sums | en_US |
| dc.subject | Cyclotomic numbers | en_US |
| dc.title | 關於對角型同餘方程及其在最佳衝突迴避碼存在性上的應用 | zh_TW |
| dc.title | Diagonal Congruence Equation with Application to the Existence of Optimal Conflict Avoiding Codes | en_US |
| dc.type | 學術論文 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202500047741-110064.pdf
- Size:
- 236.62 KB
- Format:
- Adobe Portable Document Format
- Description:
- 學術論文