在僅能觀測到部分資料的情形下,ODE model的參數估計
| dc.contributor | 陳賢修 | zh_TW |
| dc.contributor | Shyan-Shiou Chen | en_US |
| dc.contributor.author | 彭瑋翔 | zh_TW |
| dc.contributor.author | Wei-Hsiang Peng | en_US |
| dc.date.accessioned | 2019-09-05T01:18:03Z | |
| dc.date.available | 2013-2-26 | |
| dc.date.available | 2019-09-05T01:18:03Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | 在物理、化學、生物的領域上,我們常常會用微分方程模型去描述自然的現象。而對於這樣一個微分方程模型,我們可能僅能觀測到裡面的其中某幾個參數。在這樣的情形底下,我們該如何去做微分方程模型的參數估計?這就是我們要討論的議題。在考慮到電腦計算的速度以及參數估計的精確度,本文以Hindmarsh-Rose Type model做為例子,提供了一套參數估計的方法。 | zh_TW |
| dc.description.abstract | In physics, chemistry and biology, many researcher try to describe natural phenomena by ordinary differential equations (ODE) due to the fact that a lot of elegant theorem can be found in ODE and its nonlinear properties. With the observed information and some prior knowledge for a potential model, parameter estimation of an ODE model often requires a lot of computation works, such as a numerical integration of the ODE system and minimization of the log-likelihood function. In this paper, we consider a partially observed ODE model: 2D-HR type model. With the partially information, we present a simple way (iterative estimation process) without too mach computation to estimate the parameters in this model. | en_US |
| dc.description.sponsorship | 數學系 | zh_TW |
| dc.identifier | GN0699400053 | |
| dc.identifier.uri | http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699400053%22.&%22.id.& | |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101823 | |
| dc.language | 中文 | |
| dc.subject | 參數估計 | zh_TW |
| dc.subject | 微分方程模型 | zh_TW |
| dc.subject | 類Hindmarsh-Rose模型 | zh_TW |
| dc.subject | parameter estimation | en_US |
| dc.subject | ordinary differential equations | en_US |
| dc.subject | Hindmarsh-Rose Type model | en_US |
| dc.subject | partially observed model | en_US |
| dc.title | 在僅能觀測到部分資料的情形下,ODE model的參數估計 | zh_TW |
| dc.title | Parameter Estimation for Partially Observed ODE and its Applications | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- n069940005301.pdf
- Size:
- 3.8 MB
- Format:
- Adobe Portable Document Format