Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds
dc.contributor | 陳瑞堂 | zh_TW |
dc.contributor | Chen, Jui-Tang | en_US |
dc.contributor.author | 戴伯儒 | zh_TW |
dc.contributor.author | Dai, Bo-Ru | en_US |
dc.date.accessioned | 2023-12-08T07:55:56Z | |
dc.date.available | 2022-06-21 | |
dc.date.available | 2023-12-08T07:55:56Z | |
dc.date.issued | 2022 | |
dc.description.abstract | none | zh_TW |
dc.description.abstract | This thesis calculates the Scalar curvature by expanding Christoffel symbols, so we get the relation about Scalar curvatures under conformal metrics. Then, we classify two-dimension Riemannian manifolds by Euler number and discuss the existence of the conformal metrics in the different Euler numbers. Finally, in the case of χ(M )> 0, we give more details about the Trüdinger constant and see the possibilities for the different Trüdinger constants. | en_US |
dc.description.sponsorship | 數學系 | zh_TW |
dc.identifier | 60840032S-41336 | |
dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/fa76805f69b42ec33e5c934858dbc705/ | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121088 | |
dc.language | 英文 | |
dc.subject | none | zh_TW |
dc.subject | Christoffel symbols | en_US |
dc.subject | Scalar curvatures | en_US |
dc.subject | Riemannian manifold | en_US |
dc.subject | Trüdinger constant | en_US |
dc.title | Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds | zh_TW |
dc.title | Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds | en_US |
dc.type | etd |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202200041336-103555.pdf
- Size:
- 619.02 KB
- Format:
- Adobe Portable Document Format
- Description:
- etd