Conformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifolds

dc.contributor陳瑞堂zh_TW
dc.contributorChen, Jui-Tangen_US
dc.contributor.author戴伯儒zh_TW
dc.contributor.authorDai, Bo-Ruen_US
dc.date.accessioned2023-12-08T07:55:56Z
dc.date.available2022-06-21
dc.date.available2023-12-08T07:55:56Z
dc.date.issued2022
dc.description.abstractnonezh_TW
dc.description.abstractThis thesis calculates the Scalar curvature by expanding Christoffel symbols, so we get the relation about Scalar curvatures under conformal metrics. Then, we classify two-dimension Riemannian manifolds by Euler number and discuss the existence of the conformal metrics in the different Euler numbers. Finally, in the case of χ(M )> 0, we give more details about the Trüdinger constant and see the possibilities for the different Trüdinger constants.en_US
dc.description.sponsorship數學系zh_TW
dc.identifier60840032S-41336
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/fa76805f69b42ec33e5c934858dbc705/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121088
dc.language英文
dc.subjectnonezh_TW
dc.subjectChristoffel symbolsen_US
dc.subjectScalar curvaturesen_US
dc.subjectRiemannian manifolden_US
dc.subjectTrüdinger constanten_US
dc.titleConformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifoldszh_TW
dc.titleConformal Metric, Euler Number and Trüdinger Constant on Two-Dimensional Manifoldsen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202200041336-103555.pdf
Size:
619.02 KB
Format:
Adobe Portable Document Format
Description:
etd

Collections