素養導向綠色化學實驗之設計與研究-以鐵的氧化還原反應與防鏽處理為例
No Thumbnail Available
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
現今教育現場開始以素養導向的教育取代原本知識本位的教學,強調透過「探究」與「實作」讓學生有展現多元思考的機會、以實證的方式學習科學知識。本文藉由文獻分析探討素養導向於實驗課程設計的內涵,並以「鐵器的防鏽挑戰」作為情境脈絡設計出一門可以適用於高中及大學端的多層次實驗課程,藉此體現素養導向實驗設計的內涵與實踐方法。
本實驗以拉曼光譜儀確認實驗課程所製備的四種經防鏽處理的樣品其表面的成分,並透過掃描式電子顯微鏡對樣品表面進行粒徑分析,由TGS822TF傳感器及LM393放大器搭配NI USB-6008 DAQ等電子零件開發出一台自組裝氫氣感測器,對於將鐵表面由單寧酸、沒食子酸及鹽酸修飾成四氧化三鐵時所產生的氫氣進行監控,透過已知氫氣量推導出測得數值及產氫量的關係式,成功以這台自組裝氫氣感測器確認反應所產生的氣體即為氫氣,並且量測到確切的反應停止時間,並計算出反應的總產氫量。
In recent years, education has been transformed from a knowledge-based orientation to a competency-based instruction. It emphasizes the method of practice and inquiry to make students have the opportunity to show multiple thinking and learn scientific knowledge in an empirical way. The Study herein analyzed the scientific literacy connotation by literature review. Using the "rust challenge of ironware" as a context to design a multi-level experimental course that can be applied to high school and university, further suggesting feasible approaches of course practices via a case study on topic of science subject. In this way, the connotation and practical methods of competency-based experimental design are reflected. In this experiment, the Raman spectrometer was used to confirm the composition of the surface of the four anti-rust samples prepared in the experimental course, and the particle size analysis of the sample surface through the scanning electron microscope. The self-assembly hydrogen sensor was assembled mainly by the TGS822TF sensor and the LM393 amplifier, along with electronic parts like NI USB-6008 DAQ. Monitor the hydrogen generated when the iron surface is modified from tannic acid, gallic acid and hydrochloric acid to 〖Fe〗_3 O_4. The relationship between the measured value and the amount of hydrogen produced is derived from the measurement of the known amount of hydrogen. This hydrogen sensor was used to confirm that the gas produced by the reaction was hydrogen, the exact reaction stop time was measured, and the total hydrogen p roduction of the reaction was calculated.
In recent years, education has been transformed from a knowledge-based orientation to a competency-based instruction. It emphasizes the method of practice and inquiry to make students have the opportunity to show multiple thinking and learn scientific knowledge in an empirical way. The Study herein analyzed the scientific literacy connotation by literature review. Using the "rust challenge of ironware" as a context to design a multi-level experimental course that can be applied to high school and university, further suggesting feasible approaches of course practices via a case study on topic of science subject. In this way, the connotation and practical methods of competency-based experimental design are reflected. In this experiment, the Raman spectrometer was used to confirm the composition of the surface of the four anti-rust samples prepared in the experimental course, and the particle size analysis of the sample surface through the scanning electron microscope. The self-assembly hydrogen sensor was assembled mainly by the TGS822TF sensor and the LM393 amplifier, along with electronic parts like NI USB-6008 DAQ. Monitor the hydrogen generated when the iron surface is modified from tannic acid, gallic acid and hydrochloric acid to 〖Fe〗_3 O_4. The relationship between the measured value and the amount of hydrogen produced is derived from the measurement of the known amount of hydrogen. This hydrogen sensor was used to confirm that the gas produced by the reaction was hydrogen, the exact reaction stop time was measured, and the total hydrogen p roduction of the reaction was calculated.
Description
Keywords
素養導向教學, 科學素養, literacy-based instruction, competemcy-based instruction science literacy