辛矩陣與矩陣對之分類

dc.contributor謝世峰zh_TW
dc.contributorShieh, Shih-Fengen_US
dc.contributor.author游逸翔zh_TW
dc.contributor.authorYou, Yi-Siangen_US
dc.date.accessioned2019-09-05T01:05:49Z
dc.date.available2017-07-24
dc.date.available2019-09-05T01:05:49Z
dc.date.issued2017
dc.description.abstract無中文摘要zh_TW
dc.description.abstractIn applications a symplectic matrix is often required to be partitioned with a nonsingular block. By applying the complementary bases theorem of Dopico and Johnson in [3], we can rearrange a symplectic matrix with a swap matrix to obtain a nonsingular block. We classify symplectic matrices with corresponding swap matrices. Moreover, a rearrangement of symplectic pair by Mehrmann and Poloni in [8] merges a regular symplectic pair into a symplectic matrix. Therefore we can classify regular symplectic pairs with similar approach.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060340003S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060340003S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101539
dc.language英文
dc.subjectsymplectic matrixzh_TW
dc.subjectsymplectic pairzh_TW
dc.subjectcomplementary bases theoremzh_TW
dc.subjectHermitian matrixzh_TW
dc.subjectLagrangian subspacezh_TW
dc.subjectminimal classificationzh_TW
dc.subjectsymplectic matrixen_US
dc.subjectsymplectic pairen_US
dc.subjectcomplementary bases theoremen_US
dc.subjectHermitian matrixen_US
dc.subjectLagrangian subspaceen_US
dc.subjectminimal classificationen_US
dc.title辛矩陣與矩陣對之分類zh_TW
dc.titleThe Classification of Symplectic Matrices and Pairsen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060340003s01.pdf
Size:
410.57 KB
Format:
Adobe Portable Document Format

Collections