On Hankel Determinants for Dyck Paths with Peaks Avoiding Multiple Classes of Heights

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

給定一個 $[m]$ 的子集合 $V$,我們可以定義 peak 的高度在模 $m$ 下不落在 $V$ 裡面的 Dyck path,將長度為 $r$ 的路徑數定義為數列的第 $r$ 項。對任意的正整數 $n$,我們要計算此數列的 $n imes n$ 的 Hankel 行列式,而 Hankel 行列式的值也構成一個新的數列 $H(D^{(m,V)})$。本文的主要結果就是在特定的 $m$ 和 $V$ 之下,Hankel 行列式的值可以完全預測,並且在某些條件下會是週期數列,而且可以預測週期。也可以從可循環的條件構造新的循環條件。更詳細的說,我們的主要定理如下:我們的第一個主要定理(Theorem 2.3.4.)是當 $m$ 是偶數,且 $V$ 符合條件時,我們可以完全知道 $H(D^{(m,V)})$ 的每一項的值。 第二個主要定理(Theorem 3.3.1.)刻劃了一類集合 $V$,使得當 $m$ 符合特定條件時,$H(D^{(m,V)})$ 會循環,且可以逐項算出其值。 第三個主要定理(Theorem 3.3.3)我們可由上述刻劃的集合,構造出新的集合,使得當 $m$ 符合特定條件時,$H(D^{(m,V)})$ 也會循環。 我們的主要研究方法為分析路徑生成函數 $D^{(m,V)}$,求出 Hankel 行列式的遞迴。 本文相當於得到 Hankel 行列式循環的充分條件,但並非是必要條件。對於我們無法解決的情況,我們也在最後進行討論,並提出一些觀察到的結果與猜想。
For $V subset [m]$, we define a sequence ${d_r^{(m,V)}}$ such that $d_r^{(m,V)}$ is the number of Dyck paths of length $r$ whose peaks avoiding $V$ modulo $m$ and we note that the Hankel determinants of ${d_r^{(m,V)}}$ forms another sequence $H(D^{(m,V)})$. The main results of this thesis are the following:(1) If $m$ is even, we can compute $H(D^{(m,V)})$ for all $V subset {kin[m] mbox{ } | mbox{ } kmbox{ is even}}$. (2) Under a suitable assumption on $V$, if $m geq max V$, then $H(D^{(m,V)})$ is periodic and its period can be computed directly. (3) We provide a method to construct avoiding sets $V$ satisfying the assumption in (2) from a given set $V$ which already satisfies the assumption in (2). Our approach is analysing the generating functions of $D^{(m,V)}$ to find a recurrence relationfor $H(D^{(m,V)})$. For summary, we find sufficient conditions for $H(D^{(m,V)})$ being periodic; however they are not necessary. For those cases still unsolved, we provide partial results from observations and make a conjecture.

Description

Keywords

none, Peak avoiding, Dyck path, Hankel determinant, Periodic sequence, Gessel-Viennot-Lindström theorem

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By