Interval valued optimization problems on Hadamard manifolds

dc.contributor陳界山zh_TW
dc.contributorChen, Jein-Shanen_US
dc.contributor.author阮黎簪zh_TW
dc.contributor.authorNguyen Le Tramen_US
dc.date.accessioned2024-12-17T03:30:41Z
dc.date.available2024-01-12
dc.date.issued2024
dc.description.abstractNonezh_TW
dc.description.abstractIn this thesis, we study the interval valued optimization problems (IOPs)on Hadamard manifolds, including unconstrained and constrained problems. Toachieve the theoretical results, we build up some new concepts about gH-directional derivative, gH-Gâteaux and gH-Fréchet differentiability of interval valued functions with their properties on Hadamard manifolds. More specifically, we characterize the optimality conditions for the IOPs on the Hadamard manifolds. For unconstrained problems, the existence of efficient points and the steepest descent algorithm are investigated. To the contrast, the optimality conditions, exact penalty, and duality approach are explored in the ones involving inequality constraints. The obtained results pave a way to further study on Riemannian interval optimization problems (RIOPs).en_US
dc.description.sponsorship數學系zh_TW
dc.identifier80940003S-44563
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/581485c82a00537aa92e642d32b06c0e/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/123422
dc.language英文
dc.subjectNonezh_TW
dc.subjectHadamard manifoldsen_US
dc.subjectinterval variational inequalitiesen_US
dc.subjectgH-diffirentiableen_US
dc.subjectoptimality conditionen_US
dc.subjectpenalizeden_US
dc.subjectinterval valued functionen_US
dc.subjectset valued function on manifoldsen_US
dc.titleInterval valued optimization problems on Hadamard manifoldszh_TW
dc.titleInterval valued optimization problems on Hadamard manifoldsen_US
dc.type學術論文

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202400044563-106891.pdf
Size:
654.41 KB
Format:
Adobe Portable Document Format
Description:
學術論文

Collections