以磁場增強鐵磁性複合材料Ti2FeN/Co3O4進行電化學析氧反應
dc.contributor | 陳家俊 | zh_TW |
dc.contributor | Chen, Chia-Chun | en_US |
dc.contributor.author | 林柏諺 | zh_TW |
dc.contributor.author | Lin, Bo-Yan | en_US |
dc.date.accessioned | 2023-12-08T07:54:21Z | |
dc.date.available | 9999-12-31 | |
dc.date.available | 2023-12-08T07:54:21Z | |
dc.date.issued | 2023 | |
dc.description.abstract | 因為科技的進步,人們對能源的需求與日俱增,又因為大多數先進技術依賴於碳基燃料,綠色能源作為化石燃料的潛在替代品得到了廣泛研究。而氧化鈷(Co3O4)這種尖晶石結構(Spinel)的材料應用於析氧反應(Oxygen Evolution Reaction , OER)上是一個新興領域,它能夠有效降低過電位。而MAX phase 這種層狀的六方氮化物或碳化物材料,由於其具有出色的導電性以及不易受到高溫的影響,並且具有出色的抗損壞能力在近年來也被廣泛的研究。我們選用在室溫下具有鐵磁性的 MAX phase 材料 Ti2FeN,並成功的以共沉澱的方式在鹼性環境下製備出Ti2FeN與氧化鈷的複合材料,在探討此材料的析氧反樣過程中,發現了它能有效的提供更多反應的活性位點並能夠增強其電化學性能與降低反應動力學,並且在外加磁場的情況下 更 夠 明 顯 的 降 低 過 電 位 。 在 10mA/cm2 電 流 密 度 所 需 過 電 位(Overpotential)為 390mV,並且其穩定度能夠達到 6 小時之久,表現出其良好的穩定性。 | zh_TW |
dc.description.abstract | Due to the advancement of technology, the demand for energy has been increasing rapidly. As most advanced technologies rely on carbon-based fuels, green energy has been extensively researched as a potential alternative to fossil fuels. One emerging field is the application of cobalt oxide (Co3O4), a spinelstructured material, in the Oxygen Evolution Reaction (OER). It has shown the ability to effectively reduce overpotential. Another extensively studied material in recent years is the MAX phase, a layered hexagonal nitride or carbide material. It exhibits excellent conductivity, high-temperature resistance, and remarkable damage tolerance. In our study, we chose the room temperature ferromagnetic MAX phase material Ti2FeN and successfully prepared a composite material of Ti2FeN and cobalt oxide through co-precipitation in an alkaline environment. During the investigation of the oxygen evolution process of this material, it was discovered that it could provide more active sites for the reaction, enhance its electrochemical performance, and reduce reaction kinetics. Furthermore, the overpotential was significantly reduced when an external magnetic field was applied. At a current density of 10 mA/cm2, the required overpotential was 390 mV, and the stability of the material was maintained for up to 6 hours, demonstrating its excellent stability. | en_US |
dc.description.sponsorship | 化學系 | zh_TW |
dc.identifier | 61042094S-43542 | |
dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/fba36aa4ee46e0b2f083f53c157223ca/ | |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121024 | |
dc.language | 中文 | |
dc.subject | 析氧反應 | zh_TW |
dc.subject | MAX phase | zh_TW |
dc.subject | 尖晶石材料 | zh_TW |
dc.subject | 複合材料 | zh_TW |
dc.subject | Oxygen Evolution Reaction | en_US |
dc.subject | MAX phase | en_US |
dc.subject | Spinel Struture | en_US |
dc.subject | Composite material | en_US |
dc.title | 以磁場增強鐵磁性複合材料Ti2FeN/Co3O4進行電化學析氧反應 | zh_TW |
dc.title | Magnetic Field Enhanced Ferromagnetism Ti2FeN/Co3O4 Composition Material Electrochemical Oxygen Evolution Reaction | en_US |
dc.type | etd |