Iterated Galois Groups over Quadratic Number Field

dc.contributor夏良忠zh_TW
dc.contributorHsia, Liang-Chungen_US
dc.contributor.author高智強zh_TW
dc.contributor.authorKao, Chih-Chiangen_US
dc.date.accessioned2020-12-14T09:00:11Z
dc.date.available2020-07-10
dc.date.available2020-12-14T09:00:11Z
dc.date.issued2020
dc.description.abstractnonezh_TW
dc.description.abstractConsider the base field $K$ is a real quadratic number field and a polynomial $X^2+c$ where $c$ lies in the ring of integer $\mathcal{O}_K$. We will give some criteria on the iterated polynomial $f^n(X)$ of $X^2+c$ to determine whether the Galois group of $f^n(X)$ over $K$ is isomorphic to the wreath product of cyclic group of order $2$. Next, we will focus on the following three cases: \begin{enumerate} \item $K = \mathbb{Q}(\sqrt{2})$; \item $K = \mathbb{Q}(\sqrt{2p})$ where $p$ is a prime and $p\equiv 3 mod 4$; \item $K = \mathbb{Q}(\sqrt{p})$ where $p$ is a prime and $p\equiv 1 mod 4$. \end{enumerate} The class number of $\qq(\sqrt{2})$ is one, for the other two cases, we need to assume $h_K = 1$. We will give sufficient conditions on $c$ such that the Galois group of the iterated polynomial over $K$ is isomorphic to the iterated wreath product. In the last part, we will prove some $2$-independent property of an integer set over a quadratic number field.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060740017S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060740017S%22.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/111255
dc.language英文
dc.subjectnonezh_TW
dc.subjectiterated polynomialen_US
dc.subjectarboreal Galois groupen_US
dc.subjectiterated wreath producten_US
dc.subject2-independenten_US
dc.titleIterated Galois Groups over Quadratic Number Fieldzh_TW
dc.titleIterated Galois Groups over Quadratic Number Fielden_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060740017s01.pdf
Size:
425.72 KB
Format:
Adobe Portable Document Format

Collections