在n維歐氏空間上Bertrand曲線之推廣

dc.contributor林俊吉zh_TW
dc.contributorChun-Chi Linen_US
dc.contributor.author鄭永明zh_TW
dc.contributor.authorYung-Ming Chengen_US
dc.date.accessioned2019-09-05T01:11:55Z
dc.date.available2007-7-9
dc.date.available2019-09-05T01:11:55Z
dc.date.issued2007
dc.description.abstract在n維的歐氏空間,我們證明如果一個C^{infinity}-special Frenet曲線是(i_1,...,i_m)-Bertrand曲線的話,那麼在這曲線上每一點的Frenet (i_1,...,i_m)-normal平面必定包含Frenet 1-normal直線。另外,我們還證明在4維的歐氏空間如果(1,3)-Bertrand曲線有超過一個(1,3)-Bertrand mate,那麼它就會有無窮多個(1,3)-Bertrand mates。這個情況的發生若且為若k_1和k_2/k_3是常數,其中k_1、k_2和k_3分別是這曲線的曲率函數。zh_TW
dc.description.abstractIn an n-dimentional Euclidean space R^n, we prove that if a C^{infinity}-special Frenet curve C is a (i_1,...,i_m)-Bertrand curve then its Frenet (i_1,...,i_m)-normal plane at c(s) must contain the Frenet 1-normal line. In addition, we prove that if a (1,3)-Bertrand curve in R^4 has more than one (1,3)-Bertrand mate, then it has infinitely many Bertrand mates. This case occurs if and only if its curvature function k1 and the ratio of its curvature functions k2 and k3 are constant.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierGN0693400049
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0693400049%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101720
dc.language英文
dc.subjectBertrand曲線zh_TW
dc.subjectBertrand curveen_US
dc.title在n維歐氏空間上Bertrand曲線之推廣zh_TW
dc.titleOn the Generalization of Bertrand Curves in a Euclidean n-spaceen_US

Files

Original bundle

Now showing 1 - 5 of 5
No Thumbnail Available
Name:
n069340004901.pdf
Size:
80.87 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069340004902.pdf
Size:
110.01 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069340004903.pdf
Size:
126.56 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069340004904.pdf
Size:
115.01 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
n069340004905.pdf
Size:
86.4 KB
Format:
Adobe Portable Document Format

Collections