Unsupervised Clustering Based on Alpha-Divergence

dc.contributor黃聰明zh_TW
dc.contributorHuang, Tsung-Mingen_US
dc.contributor.author劉又寧zh_TW
dc.contributor.authorLiu, You-Ningen_US
dc.date.accessioned2022-06-08T02:38:50Z
dc.date.available2022-11-05
dc.date.available2022-06-08T02:38:50Z
dc.date.issued2022
dc.description.abstractnonezh_TW
dc.description.abstractRecently, many deep learning methods have been proposed to learning representations or clustering without labelled data. Using the famous ResNet[1] backbone as an effective feature extractor, we present a deep efficient clustering method that optimizes the data representation and learn the clustering map jointly. Despite the many successful applications of Kullback–Leibler divergence and Shannon entropy, we use alpha-divergence and Tsallis entropy to be an extension of the common loss functions. For detailed interpretation , we further analyze the relation between the clustering accuracy and the distinct alpha values. Also, we achieve 53.96% test accuracy on CIFAR-10[2] dataset, 27.24% accuracy on CIFAR-100-20[2] dataset in unsupervised tasksen_US
dc.description.sponsorship數學系zh_TW
dc.identifier60740018S-40911
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/4696e22f128e07651f0e1771157d5da5/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/117059
dc.language英文
dc.subjectnonezh_TW
dc.subjectAlpha-Divergenceen_US
dc.subjectDeep Learningen_US
dc.subjectDeep Clusteringen_US
dc.subjectContrastive Learningen_US
dc.subjectResNeten_US
dc.subjectTsallis Entropyen_US
dc.subjectKL Divergenceen_US
dc.subjectShannon Entropyen_US
dc.titleUnsupervised Clustering Based on Alpha-Divergencezh_TW
dc.titleUnsupervised Clustering Based on Alpha-Divergenceen_US
dc.type學術論文

Files

Collections