dc.contributor林俊吉zh_TW
dc.contributorChun Chi Linen_US
dc.contributor.author洪旻楷zh_TW
dc.contributor.authorMin Kai Hungen_US
dc.date.accessioned2019-09-05T01:17:11Z
dc.date.available不公開
dc.date.available2019-09-05T01:17:11Z
dc.date.issued2010
dc.description.abstract在這篇文章中,我們考慮Normal Projection Energy的一些性質。首先,在$C^{1,1}$平滑性下的Knot,有上界之Normal Projection Energy給出Knot的Gromov's distortion下界。接著,Normal Projection Energy可由total curvature和ropelength之乘積涵蓋住。最後,為求Normal Projection Energy的涵蓋界,我們考慮一類包含在球中並給定端點和總長之曲線的total curvature。zh_TW
dc.description.abstractIn these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierGN0697400217
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0697400217%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101806
dc.language英文
dc.subjectzh_TW
dc.subject正交投影能zh_TW
dc.subject平均交叉數zh_TW
dc.subject厚度zh_TW
dc.subject總曲率zh_TW
dc.subject結型zh_TW
dc.subjectknotsen_US
dc.subjectnormal projection energyen_US
dc.subjectaverage crossing numberen_US
dc.subjectthicknessen_US
dc.subjecttotal curvatureen_US
dc.subjectknot typeen_US
dc.titlezh_TW
dc.titleOn the finiteness of geometric knotsen_US

Files

Collections