二疊錐與半正定錐相似程度之比較 To what extent are second-order cone and positive semidefinite cone alike?

dc.contributor 陳界山 zh_TW
dc.contributor Jein-Shan Chen en_US
dc.contributor.author 廖淳格 zh_TW
dc.contributor.author Tsun-Ko Liao en_US
dc.date.accessioned 2019-09-05T01:16:08Z
dc.date.available 2009-6-11
dc.date.available 2019-09-05T01:16:08Z
dc.date.issued 2009
dc.description.abstract 二疊錐與半正定錐都是對稱錐的一種特例,它們分別在二疊錐規劃與半正定錐規劃方面扮演了重要的角色。目前已知透過二疊錐與半正定錐之間的某些關係,可以將二疊錐規劃問題可以轉化成半正定錐規劃問題,但關於它們之間的一些分析技巧還是有許多不同。例如矩陣的乘積是具有結合律的,但二疊錐的Jordan乘積卻沒有。在這篇論文中,我們試著去找出、比較一些二疊錐與半正定錐之間相同或相異的地方,希望能為以後的研究提供一些想法。 zh_TW
dc.description.abstract The cone of positive semidefinite matrices and second-order cone are both self-dual and special cases of symmetric cones. Each of them play an important role in semidefinite programming (SDP) and second-order cone programming (SOCP), respectively. It is known that an SOCP problem can be viewed as an SDP problem via certain relation between positive semidefinite cone and second-order cone. Nonetheless, most analysis used for dealing SDP can not carried over to SOCP due to some difference, for instance, the matrix multiplication is associative for positive semidefinite cone whereas the Jordan product is not for second-order cone. In this paper, we try to have a thorough study on the similarity and difference between these two cones which provide theoretical for further investigation of SDP and SOCP. en_US
dc.description.sponsorship 數學系 zh_TW
dc.identifier GN0696400222
dc.identifier.uri http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0696400222%22.&%22.id.&
dc.identifier.uri http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101782
dc.language 英文
dc.subject 二疊錐 zh_TW
dc.subject 凸函數 zh_TW
dc.subject 單調函數 zh_TW
dc.subject 半正定錐 zh_TW
dc.subject 分解定理 zh_TW
dc.subject second-order cone en_US
dc.subject convex function en_US
dc.subject monotone function en_US
dc.subject positive semidefinite matrix en_US
dc.subject spectral decomposition en_US
dc.title 二疊錐與半正定錐相似程度之比較 zh_TW
dc.title To what extent are second-order cone and positive semidefinite cone alike? en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069640022201.pdf
Size:
284.58 KB
Format:
Adobe Portable Document Format
Description:
Collections