The Effects of Incomplete Q-Matrix on Parameter Estimates and Classification Accuracy in the DINA and DINO Models and Non-parametric Approach

dc.contributor蔡碧紋zh_TW
dc.contributorTsai, Pi-Wenen_US
dc.contributor.author賴韻婷zh_TW
dc.contributor.authorLai, Yun-Tingen_US
dc.date.accessioned2019-09-05T01:06:47Z
dc.date.available不公開
dc.date.available2019-09-05T01:06:47Z
dc.date.issued2018
dc.description.abstract用Q矩陣為基礎以側寫考生認知的認知診斷模型越來越受關注,故確保認知辨識性的Q矩陣完備性很重要。然而,要準備一份具有Q矩陣完備性的測驗往往是很困難的,尤其是當感興趣的能力數量很大時。因此,本文主要的目的是探究不完備Q矩陣對認知辨識率的準確度和認知診斷模型的參數估計的影響。我們探究了不完備Q矩陣對DINA/DINO模型和無母數方法的影響。透過模擬研究不同設定下不完備Q矩陣的影響。在這三個模型的認知辨識率上使用等價分類的概念探究不完備Q矩陣的影響。模擬結果顯示,不完備Q矩陣的影響並不如我們預期的嚴重,特別是在即使有完備Q矩陣亦無法準確分類的狀況。在認知辨識率的比較,參數模型在面對不完備Q矩陣時更具穩健性。且不完備的Q矩陣對參數模型的題目參數估計沒有顯著影響。zh_TW
dc.description.abstractThere has been growing interest in Q-matrix based cognitive diagnosis models to assess examinees’ attribute profiles. The completeness of Q-matrix is important for assuring the identification of all attribute profile classes. However, it is often difficult to have assessments with complete Q-matrix especially when the number of attributes of interest is large. The main objective of this research it to study the effects of incomplete Q-matrix on the classification accuracy of examinees’ attribute profiles and on the parameter estimates for the cognitive diagnosis models. We investigate the effects of incomplete Q-matrix in the DINA/DINO models and the non-parametric method suggested by Chiu& Douglas (2013). Simulation studies are carried out to study the effects of incomplete Q-matrix under different scenarios. The idea of the equivalence class is used on the classification accuracy for these three models to explore the effect of incomplete Q-matrix. Our results show that the effects of incomplete Q-matrix were not as formidable as we expected, especially for the cases where the imprecise classification will happen even with complete Q-matrix. As for the classification accuracy, the parametric model is more robust than the non-parametric approach. Moreover, incomplete Q-matrix did not have a significant effect on the maximum likelihood estimation of item parameters.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060540030S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060540030S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101586
dc.language英文
dc.subject認知診斷zh_TW
dc.subject不完備的Q矩陣zh_TW
dc.subjectDINAzh_TW
dc.subjectDINOzh_TW
dc.subject無母數方法zh_TW
dc.subject等價分類zh_TW
dc.subjectCognitive Diagnosisen_US
dc.subjectIncomplete Q-matrixen_US
dc.subjectDINAen_US
dc.subjectDINOen_US
dc.subjectNon-parametric Classificationen_US
dc.subjectEquivalence Classen_US
dc.titleThe Effects of Incomplete Q-Matrix on Parameter Estimates and Classification Accuracy in the DINA and DINO Models and Non-parametric Approachzh_TW
dc.titleThe Effects of Incomplete Q-Matrix on Parameter Estimates and Classification Accuracy in the DINA and DINO Models and Non-parametric Approachen_US

Files

Collections