推廣施-董的組合固定點定理至有限分配格

dc.contributor陳界山zh_TW
dc.contributor施茂祥zh_TW
dc.contributor.author吳樹恆zh_TW
dc.contributor.authorWu, Shu-Hanen_US
dc.date.accessioned2019-09-05T01:07:08Z
dc.date.available2015-07-14
dc.date.available2019-09-05T01:07:08Z
dc.date.issued2015
dc.description.abstract施-董的組合不動點定理證明,如果從n維超立方體到自身的函數滿足了每個在超立方體的元素其布爾雅可比矩陣的特徵值是零,那麼該函數有唯一的固定點。該定理等價對偶敘述具有生物學意義。我們的目標是推廣施-董定理到所有的有限分配格。我們的證明方法是基於施-董的“集體影響法”以及G.伯克霍夫的有限分配格表現定理。zh_TW
dc.description.abstractShih-Dong's combinational fixed point theorem asserts that if a map from the n-dimensional hypercube into itself satisfies that all the Boolean eigenvalues of the Boolean Jacobian matrix are zero for each element in the hypercube, then it has a unique fixed point. Its equivalent contrapositive form has biological implications. Our goal is to provide an extension of Shih-Dong's theorem into all finite distributive lattices. Our method of proof is based on Shih-Dong's “collective effect method” as well as G. Birkhoff's representation theorem for finite distributive lattices.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG0895400015
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0895400015%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101600
dc.language英文
dc.subject離散動態系統zh_TW
dc.subject有限分配格zh_TW
dc.subject固定點zh_TW
dc.subject廣義布爾雅可比矩陣zh_TW
dc.subject負迴路zh_TW
dc.subject正迴路zh_TW
dc.subjectDiscrete dynamical systemen_US
dc.subjectFinite distributive latticeen_US
dc.subjectFixed pointen_US
dc.subjectGeneralized Boolean Jacobian matrixen_US
dc.subjectNegative circuiten_US
dc.subjectPositive circuiten_US
dc.title推廣施-董的組合固定點定理至有限分配格zh_TW
dc.titleGeneralization of Shih-Dong's combinational fixed point theorem to finite distributive latticesen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
089540001501.pdf
Size:
358.73 KB
Format:
Adobe Portable Document Format

Collections