Zassenhaus Conjecture for Some Metabelian Groups
Zassenhaus Conjecture for Some Metabelian Groups
Date
2010
Authors
張弼程
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
在1960 年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups,Zassenhaus 提出了三個猜想。
其中最強的一個猜想(ZC-3)如此敘述:
如果 H 是 V(ZG) 中的有限子群, 則 H 會和 G 裡的一個子群在 QG 中共軛。
雖然此一猜想已有反例,但依然具有研究價值。在此篇論文中我們將證明:
若一有限群G包含一個 normal abelian Sylow p-subgroup A,並且G/ A 是abelian,則G 滿足(ZC-3)。
In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of V(ZG), then H is conjugate to a subgroup of G in QG. In this thesis, we prove that if G contains a normal abelian Sylow p-subgroup A with G/ A abelian, then (ZC-3) holds for G.
In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of V(ZG), then H is conjugate to a subgroup of G in QG. In this thesis, we prove that if G contains a normal abelian Sylow p-subgroup A with G/ A abelian, then (ZC-3) holds for G.
Description
Keywords
integral group rings,
Zassenhaus Conjecture,
torsion units