化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    缺陷工程提升鐵電材料Sn2P2S6光催化二氧化碳還原反應之探討
    (2023) 陳盈君; Ying-Jun, Chen
    利用太陽能將二氧化碳轉化為碳氫燃料,是一種有望同時解決全球暖化和能源供應問題的方式。本研究以Sn2P2S6作為光催化劑,進行二氧化碳還原反應。Sn2P2S6做為二維材料中過渡金屬硫化物的一員,具有合適的能帶結構,可以吸收可見光以進行二氧化碳的還原。其較大的表面積也為吸附二氧化碳帶來許多活性位點。此外,層狀結構也使得光生電子-電洞對可以快速遷移至表面進行反應。綜合以上優點,我們認為Sn2P2S6擁有光催化二氧化碳還原的潛力。而光催化結果顯示,Sn2P2S6對於甲烷有高的選擇性,產率為33.90 μmol g-1 (6h)。缺陷工程是目前改善光催化劑效果的重大策略之一。通過引入缺陷,我們可以有效調節材料內部的電子結構,改善材料吸收可見光的範圍,並降低電子與電洞的再結合。除此之外,還能為材料表面帶來更多的活性位點。本研究以高溫加熱的方式在Sn2P2S6表面引入硫缺陷,以增強光催化劑的效果。實驗結果顯示,在引入缺陷後,光催化劑的效率提高到47.60 μmol g-1 (6h),相較於原始的Sn2P2S6催化劑效果更好。另外,先前文獻提出,引入缺陷可導致材料產生自旋極化的現象。因此,我們透過加入磁場的方式進一步增加自旋極化的電子,進而提高光催化的效果,最終產率達到57.52 μmol g-1 (6h)。
  • Item
    掌性鈣鈦礦奈米晶體進行光催化二氧化碳還原反應之探討
    (2023) 曾薇妮; Tseng, Wei-Ni
    鹵化鈣鈦礦由於具備優異的光電性質,在光學元件的應用上獲得相當不錯的成就,在催化領域中,藉由自旋極化電子的導入,除了能有效分離電荷外,也能抑制電荷複合以提升催化表現。本篇研究透過結合掌性分子及鈣鈦礦材料製備出具有2D/3D混合結構的掌性鈣鈦礦奈米晶體,並利用其作為能形成自旋極化電子的光觸媒材料,以提高光催化二氧化碳還原反應表現。首先進行CsPbBr3 奈米片(NPLs)及掌性分子鹽類MBA:Br的合成,並進行光學及結構分析。將CsPbBr3 NPLs利用MBA:Br修飾後,透過粉末X光繞射、吸收及光致發光光譜確認其結構及光學性質,再透過圓二色及圓偏振螢光光譜確認MBA:Br成功接上CsPbBr3 NPLs。由於自旋極化電子的產生, 2D/3D混合結構的掌性鈣鈦礦奈米晶體能有效提升催化表現,以反應主產物一氧化碳(CO)而言,產率自14.8 μmol g-1分別提升至39.2及26.8 μmol g-1,掌性鈣鈦礦材料在外加磁場(0.3T)的幫助下,CO產率更是分別提升到75.3及48.2 μmol g-1。另外藉由透過磁性圓二色光譜及時間解析螢光光譜探討磁場對於反應機制的影響,證實外加磁場能有效增強自旋極化及延長載流子生命週期並提升催化表現。