化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    以中孔氧化石墨烯奈米粒子結合表面輔助雷射游離/脫附檢測精神活性物質
    (2023) 陳鴻博; Chen, Hong-Po
    本研究以中孔氧化石墨烯奈米粒子 (mesoporous graphene oxide nanoparticles, MGNs) 作為新型奈米基質,結合表面輔助雷射游離脫附 (surface-assisted laser desorption/ionization, SALDI) 技術檢測精神活性物質,提升表面質譜檢測之再現性及低荷質比區間 (m/z 100-500) 背景干擾問題。類似於中孔洞沸石奈米粒子 (MZNs) 具有高比表面積 (>900 m2/g) 及孔洞 (5-6 nm) 之高孔容 (≈1 mL/g) 具有優異的吸附藥物能力,MGNs表面因具有氧化石墨烯的強吸光性 (200-900 nm) 及近紅外放光 (1000-2500 nm) 特性,具有優異的光熱轉換效率提供精神活性物質游離/脫附之能量。對照兩種有機酸-基質龍膽酸 (2,5-Dihydroxybenzoic acid, DHB) 、α-氰基-4-羥基肉桂酸 (α-cyano-4-hydroxycinnamic acid, α-CHCA) 和商業化氧化石墨烯 (GO) 檢測精神活性物質的質譜結果,MGNs偵測濃度已達到法規濃度 (50 ppb) 等級且具有更低的背景訊號,且對於真實樣品之定量誤差值小於10%。此外,透過結合自動化技術分離尿液與咖啡包檢體,有望達到即時輔助臨床檢測進行毒癮即時檢測及防治。
  • Item
    以化學氣相沉積法合成負載於中孔洞之鈣鈦礦材料應用於光催化二氧化碳還原
    (2023) 陳睿彣; Chen, Jui-Wen
    本研究以化學氣相沉積法結合中孔洞及碳材,在高溫反應 (700-900°C)下及不同反應時間(10-90 分鐘),將具有空氣及水氣敏感之鈣鈦礦結構附載於中孔洞材料中,並調控生長CsPbBr3/Cs4PbBr6異質結構,並且研究空氣及抽真空對於異質結構發光之影響。為避免孔洞外生長所造成鈣鈦礦氧化、水解等副反應,本研究利用高溫裂解界面活性劑或乙烯氣體以生長表面碳材(2.5-5 mmol/g SiO2),不僅將鈣鈦礦前驅物有效沉積,並同步生長及保護鈣鈦礦奈米粒子,經由X光繞射實驗及謝樂擬合經驗式證實奈米粒子 (<2 nm)包覆於複合材料中。此複合材料經由紫光 (405 nm)照射後,原鈣鈦礦螢光強度粹滅18倍,顯示其具有電荷分離效果。 在二氧化碳還原實驗中,我們利用即時反應偵測氫氣、甲烷及一氧化碳生成,同時優化二氧化碳流速 (10-50 sccm)對於殘留空氣及反應時間 (0-6小時)之影響,比較三種孔洞載體 (MZNs、Ar-MZNs、MGNs)在不同溫度 (700-900oC)負載鈣鈦礦材料進行二氧化碳還原反應。其中以乙烯裂解產生之MGNs在UV光(365 nm)下具有最佳的催化效率,其中氫氣、甲烷及一氧化碳的產生量較初始值提升13.3 %、14.7 %、10.0 %,此結果回應上述螢光淬滅之實驗結果,同時也說明氣相沉積法合成中孔洞-鈣鈦礦複合材料應用於光催化二氧化碳可行性。
  • Item
    一步驟常壓微電漿法合成氧化石墨烯包覆銀奈米粒子負載於中孔洞沸石材料以應用於小分子的表面增強拉曼檢測
    (2023) 賴玟均; Lai, Wen-Chun
    本研究以電漿法方式改善原先以化學法合成銀奈米粒子於孔洞上負載量低的問題,利用電漿形成高濃度活性自由基的存在下,幫助在同樣具有自由基的MZNs上還原銀奈米粒子,並促進了有機配子石墨烯化的發生,合成奈米銀-氧化石墨烯-沸石複合材料(Ag-GO@MZNs)。與過去使用化學法相比,銀的附載量有大於50倍的顯著提升(0.550 wt%29.20 wt%),進而使藥物感測有低於100倍的檢測濃度(25000 ppm250 ppm)。電漿法具有簡單合成的的優勢,省去過去實驗室先以化學氣相沉積法在高溫(825°С)氬氣環境下裂解乙烯生成氧化石墨烯後,再以還原劑合成銀奈米粒子,電漿法以一步驟同時生長氧化石墨烯包覆銀奈米粒子。目前已成功應用於咖啡包中主要的毒品成分檢測,可測得10 ppm 下的mephedrone,未來將積極投入結合自動化技術分離尿液中濫用藥物同時作SERS偵測,作為第一現場藥物檢測應用。
  • Item
    以化學氣相沉積合成生長錳摻雜鈣鈦礦奈米粒子及其於中孔洞沸石中之限制生長
    (2021) 傅宇謙; Fu, Yu-Cian
    本研究以高表面積(SBET > 800 m2 / g)的中孔沸石奈米粒子(mesoporous zeolite nanoparticles, MZNs)做為基材,於高溫下(700-900°C)溴化鉛與溴化銫為前驅物進行化學氣相沉積(chemical vapor deposition, CVD)反應,合成中孔洞限制的CsPbBr3/Cs4PrBr6的鈣鈦礦(pervoskite)奈米粒子。鈣鈦礦奈米粒子大小可以藉由前驅物比例及溫度改變加以調控,其電子結構及型貌利用紫外-可見光譜儀、螢光光譜儀、X-光繞射及穿透式電子顯微鏡佐證。合成過程中引入鎂離子及具有未成對電子的錳離子,使摻雜之鈣鈦礦奈米粒子放光具有不同波長,其結構組成、電子結構及自旋特性,以感應偶合電漿質譜、X光繞射光譜、螢光光譜及電子順磁共振光譜儀證實。此外,使用具半導體特性的中孔氧化石墨烯奈米粒子(mesoporous graphene-oxide nanoparticles, MGNs)做為基材時,可有效增進電荷分離效率,於照光下可使二氧化碳還原成一氧化碳,並以紫外-可見光譜儀及螢光光譜佐證其電子結構之變化。無機鈣鈦礦材料具良好的發光及催化效能,未來欲結合中孔洞薄膜材料之生長,生長具大氣穩定之太陽能轉換材料,提供異質結構於中孔洞沸石材料上限制生長之研究。
  • Item
    中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用
    (2019) 張云柔; Chang, Yun-Jou
    本實驗室研發之自組裝合成法,可生成具有中孔及微孔洞結構的沸石奈米粒子。其高比表面積(800-900 m2/g)、規則中孔洞(5-6 nm)、高結晶性所產生之微孔的性質(< 1 nm),可有效提高其水熱穩定性,並應用於空間限制的載體以及催化等用途。透過有機鋰試劑修飾過程,可使奈米粒子具有捕捉二氧化碳的能力,所產生的碳酸鋰被有效限制於在中孔洞內,並達到循環利用的效果。 透過一步驟的化學氣相沉積反應,並以乙烯氣體做為碳源、直接裂解於沸石表面上,生成單層及數層之氧化石墨烯並維持原中孔洞形貌。經由拉曼光譜、X光光電子能譜、螢光光譜、紫外光-可見光吸收光譜、X光粉末繞射等鑑定,證實其組成結構為中孔洞氧化石墨烯-沸石複合奈米粒子。改質後的奈米粒子,表面可大量吸附有機染料及金屬離子,氧化石墨烯中的自由基並可誘發類芬頓反應,以有效催化有機物之分解。
  • Item
    具半導體特性之複合中孔薄膜之合成、鑑定及應用
    (2018) 張學仁; Chang, Hsueh-Jen
      本研究利用三組成界面活性劑於溶液中自組裝形成微胞,並於矽晶片基板表面排列而形成的模板,在加入沸石晶種後,於模板周圍聚合生成具有中孔洞結構的沸石薄膜。分別透過界面活性劑組成調整、矽晶片表面處理以及沸石晶種的調控等,有效優化中孔洞沸石薄膜的形貌。並通過電子顯微鏡以及低略角X光散射來觀察中孔洞沸石薄膜的形貌以及結構。中孔洞沸石薄膜具有高度整齊排列、垂直於基板的中孔道結構,孔徑大小約為6-8 nm,於矽晶片表面具有極高的覆蓋率。得益於中孔道沸石薄膜的沸石組成以及中孔形貌,中孔道沸石薄膜在作為空間限制的載體以及催化等方面具有各種用途。   而通過簡單的化學氣相沉積過程,在不需添加任何額外的催化劑下,乙烯氣體能夠直接於此中孔洞沸石材料表面裂解,在不破壞中孔道結構、不堵塞孔洞的情況下生成石墨烯氧化物並包覆形成中孔洞氧化石墨烯–沸石複合材料。經由拉曼光譜以及X光光電子能譜進行材料組成鑑定確認其石墨烯氧化物的組成。藉由合成溫度、碳源以及降溫程序等製程上的調控,有效優化中孔道氧化石墨烯–沸石複合薄膜的合成,將原本中孔道沸石薄膜的導電度提升兩個級數以上,並大大增加了其在電化學方面的應用。