化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用
    (2007) 蔡志鑫; Chih-Hsin Tsai
    本研究成功的發展了三種新的毛細管電泳分析技術。首先是成功的開拓了LED (發光二極體)在毛細管電泳分析領域的適用性。這是以市售紫光LED (405 nm) 為螢光激發光源,對血壓平(reserpine)及衍生物進行螢光偵測。使用CZE-stacking濃縮技術偵測極限可達1.6 × 10-8 M。若使用sweeping-MEKC (微胞掃集法)及CSEI-sweep-MEKC (陽離子選擇完全注射掃集MEKC法)濃縮技術時,其偵測極限分別可以達到2.1 × 10-9 M及2.1 × 10-10 M。另外藉由NDA (naphthalene-2,3-dicarboxaldehyde)做為螢光標識試劑,與多巴胺進行衍生反應以後,以螢光偵測結合MEKC及sweeping-MEKC濃縮技術進行測量,其偵測極限可達6.3 × 10-6 M及3.0 × 10-8 M。 其次,本研究首先發展以低溫-非水相毛細管電泳的新方法。對其光學異構物±3,4-methylenedioxymethamphetamine (±3,4-MDMA)可以獲得良好的分離效果。本文詳細探討各種最佳的電泳條件,包括使用各種不同的低溫槽及毛細管內最佳化的高導電度的緩衝溶液。在CZE模式下偵測極限可以達到4.7 × 10-6 M,再結合低溫/非水相堆積線上濃縮技術(LTB/NACZE-stacking),偵測極限更可以達到5.0 × 10-9 M。此外為了增加樣品進樣量以及能夠有更窄的樣品區帶,在樣品區帶和電泳背景溶液之間加入一段高導區帶,造成溶液之間有不同的導電梯度,使得樣品進樣量相對增加。利用這些技術,亦成功的應用在真實樣品3,4-MDMA的分析上。 最後,本研究對於非螢光性物質的偵測,亦成功的發展出新的方法。傳統上毛細管電泳法對非螢光性物質的偵測方法不外乎使用間接法,或是將非螢光性物質加以螢光衍生劑衍生後加以偵測。本研究選用非螢光性物質孔雀石綠為測試樣品,並以波長532 nm 雷射(Nd:YAG的第二倍頻波)為拉曼激發光源。在孔雀石綠定量分析上,以單光器(有效寬度0.4 nm)以及拉曼波數1616 cm-1作為收光範圍。 在毛細電泳/共振拉曼的模式下,孔雀石綠在CZE和MEKC模式下的偵測極限為1.6 × 10-5 M 和 1.1 × 10-5 M。當結合線上濃縮技術stacking及sweeping時,偵測極限可以達到3.4 × 10-7 M和5.3 × 10-9 M。而在毛細電泳/表面增強拉曼模式下,再結合線上濃縮技術stacking及sweeping,偵測極限甚至可以分別高達到4.4 × 10-8 M和1.1 × 10-9 M。本方法亦有效的應用在真實樣品的偵測上。
  • Item
    利用毛細管紫外光/螢光電泳及紙噴灑技術對六種鹵化安非他命狡詐家濫用藥物的分析研究
    (2012) 李珣; Hsun Lee
    為了規避法律的規範,近幾年來許多毒犯會合成一系列安非他命的衍生物在街頭販售,使得濫用藥物氾濫的情形愈趨嚴重。本篇研究選用鄰、間、對-氯安非他命和鄰、間、對-氟安非他命這六種安非他命濫用藥物當待測樣品。 首先利用毛細管紫外光電泳結合線上掃集濃縮技術,偵測分離六種鹵化安非他命的混合溶液。並利用毛細管螢光電泳偵測安非他命衍生後的唾液真實樣品,衍生方法採取一般暗處靜置衍生和微波加熱衍生兩種方法。由於對-氯安非他命在 2011 年被歸列為第三級毒品,利用筆尖紙噴灑質譜技術(novel nib-assisted paper spray-mass spectrometry, NAPS-MS)以對-氯安非他命當樣品做偵測,分別偵測了標準品以及唾液真實樣品。實驗中有比較四種紙噴灑的材質對於對-氯安非他命的偵測極限,由結果發現,紙噴灑的技術對於安非他命濫用藥物的偵測極限可達 0.1 mg/L 以下。
  • Item
    毛細管電泳/藍光雷射誘導螢光偵測法 對尿液中乳酸及3-羥丁酸之分析研究
    (2013) 洪榮華; Rong-Hua Hong
    乳酸和3-羥丁酸為體內正常有機代謝產物,但是當肝臟疾病或體內脂肪氧化代謝異常時,血液中乳酸和3-羥丁酸就會過度累積,而發生乳酸性中毒和酮酸中毒的現象。由於乳酸和3-羥丁酸僅有極低的紫外光吸收性質,且不容易以電噴灑質譜法進行偵測,而傳統酵素測定法偵測乳酸和3-羥丁酸則容易受到內生性物質的干擾而影響準確性。本研究以毛細管電泳/藍光雷射誘導螢光偵測法,偵測尿液中的乳酸濃度以作為臨床診斷酮酸中毒的參考數據。目前市面上沒有適合的螢光衍生試劑,因此本實驗合成4-N-(4-N-aminoethyl)piperazino-7-nitro-2,1,3-benzoxadiazole作為乳酸和3-羥丁酸的螢光衍生試劑。衍生過程需要使用催化劑TPP (triphenylphosphine) 和DPDS (2,2’-dipyridyl disulfide) 來幫助反應進行。若利用微波輔助衍生,可將衍生反應時間縮短為3分鐘。衍生物結構在低pH值環境下會進行質子化並放出螢光,對於分離乳酸和3-羥丁酸的衍生物而言,利用pH 值小於3的磷酸緩衝液且不需添加有機修飾劑、界面活性劑即可完全分離。當以藍光雷射為螢光激發光源時,最佳偵測條件下,偵測極限約為10 g/L。由於雷射誘導螢光檢驗法的靈敏度高,因此不需要利用線上濃縮技術。本研究選擇的真實樣品為尿液和唾液,其前處理經過去蛋白和稀釋即可進行衍生。檢測結果發現,正常人尿液中的乳酸濃度約為 39 ± 11 mg/L。藉由運動的方式增加醣類代謝和脂肪氧化速度,則尿液中代謝的乳酸濃度增加為231 ± 121 mg/L。進食前唾液樣品中乳酸濃度約為49 ± 16 mg/L,進食後唾液樣品中由於葡萄糖濃度上升增加轉醣酵素的代謝速率,代謝物乳酸濃度上升至192 ± 48 mg/L。本研究提供簡單、快速的分析技術並成功的應用在真實樣品的檢測。
  • Item
    毛細管電泳-不均勻電場效應輔助線上掃集法/紫光LED誘導螢光偵測法對尿液中多巴胺及正腎上腺素之分析研究
    (2005) 李晏誠; Yen-Cheng Li
    毛細管電泳-不均勻電場效應輔助線上掃集法第一次被提出並且與一般的掃集法在靈敏度上以及分離效果作比較。本實驗選擇的分析物是經由NDA (naphthalene-2,3-dicarboxaldehyde) 螢光標識試劑衍生後的多巴胺以及正腎上腺素。在使用一般的掃集法技術下,當毛細管的進樣長度為30 cm (大約佔毛細管總長的1/3) 時,此時的分離度僅有1.5;然而當使用不均勻電場效應輔助線上掃集法時,分離度可以很明顯的增加到9.2。另外在偵測靈敏度上,以紫光/發光二極體 (發光功率大約2mW) 為螢光激發光源時,對於多巴胺衍生物其偵測極限大約是10-9 M,與使用一般的掃集法的偵測極限相近,因為此時的進樣量是相同的。除此之外,這個技術對於偵測尿液中低濃度的多巴胺也提供了足夠的靈敏度以及分離效果。
  • Item
    大體積進樣之毛細管電泳法的開發與研究
    (2005) 石浚旻; Chun-Min Shih
    為了更加提高毛細管電泳法的偵測靈敏度,本研究開發出兩種線上濃縮技術,分別為大小管結合線上掃集法(Coupled-capillary/ sweeping-MEKC, CC/sweeping-MEKC)及整管進樣堆積結合線上掃集法(Full-capillary sample stacking/sweeping-MEKC, FCSS/sweeping- MEKC)。在大小管結合線上掃集方法中,藉由管徑較大部分為進樣端,樣品進樣量可達1.8 L。其中,因為毛細管大小內徑的不均等,會造成電場的不均勻性(大管徑部分:低場強;小管徑部分:高場強)。當SDS微胞在大管徑部分進行掃集時,由於電場不均勻性的影響下,使分析物以非常緩慢的速率逐漸被微胞掃集起來,因此可進一步增加濃縮效率。另一方面,整管進樣堆積結合線上掃集法結合了stacking、sweeping、dynamic pH-junction、MEKC四種技術,而達成整管樣品進樣(最大體積)之目的,其中樣品進樣量可達2.7 L。與MEKC做比較,以上兩種方法在偵測靈敏度上分別有500倍及350倍的改進效果。