化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    自組裝合成中孔碳材之表面修飾及負載鉑(Pt)金屬觸媒之製備、特性鑑定及其在DMFC/PEMFC燃料電池之應用
    (2008) 江建章; Chien-Chang Chiang
    由於目前全球正面臨石化燃料短缺,油價持續高漲;能源短缺的危機迫在眉睫以及日趨嚴重之大氣環境污染等問題,因而相關綠色能源議題也逐漸被訴求且受到重視,其中,風力、潮汐能、太陽能、氫能源、燃料電池等相關研究與發展,近幾年都是世界各國積極尋求替代性能源創新開發之重點方針。本研究主要目的,在於研發新穎之奈米結構孔洞碳材與負載鉑(Pt)等貴重金屬之一步合成奈米中孔洞碳材(Pt-SCMs),並應用於燃料儲存與燃料電池等能源相關領域。 在材料方面,本研究主要利用奈米結構之孔洞性碳材的高比表面積、高結構、水熱及機械穩定性,以及獨特的吸附、電化學及催化等特性作為燃料電池材料,例如:燃料儲存吸附載體或燃料電池電極觸媒擔體。但由於目前許多奈米中孔結構碳材都是利用中孔矽模板(例如:SBA-15)填入碳源經高溫石墨化後,再使用氫氟酸(HF)將模板移除,合成複製而來,其中除需使用高成本之矽烷(silanes)材料外,複製合成中孔碳材的步驟亦十分繁瑣,因而大幅降低其實際應用之可能行性。因此,吾人提出利用低成本之有機化合物一步合成直接製備奈米中孔洞碳材的策略,期能節省合成之時間與成本,更符合商業化應用趨勢。 吾人首先利用一介面活性劑做為軟模版,有機化合物當做碳源,應用有機-有機自組裝(organic-organic self-assembly)方式合成,再使用不同溫度(350℃、550℃、850℃)石墨化,獲得奈米中孔洞碳材(SCMs),隨後,再以有機矽烷類3-[2-(2-Aminoethylamino)ethyl amino]propyltrimethoxysilane(C10H27N3O3Si)進行表面胺基官能化修飾,並透過各種光譜及分析實驗技術,鑑定並探討其物化特性。吾人再於SCMs碳材上負載貴重金屬鉑(Pt),再利用化學方法將金屬鉑還原,最後合成出負載鉑金屬之中孔洞碳材(Pt-SCMs)。隨後,再利用Pt-SCMs複合材料作為燃料電池陰極觸媒,以循環伏特(CV)法測量其電化學特性,並探討比較其對氧氣還原反應(oxygen reduction reaction; ORR)之催化效能。 本研究所獲得之結果,不僅可望增進吾人對一步合成製備奈米中孔洞碳材SCMs及負載金屬的方法與物化特性及其在質子交換膜燃料電池(PEMFC)或直接甲醇燃料電池(DMFC)之電極觸媒應用之瞭解外,並期望能提昇其在燃料電池陰極之氧氣還原催化效能,進而降低觸媒與碳材之製備成本,增加商業化的競爭力。故本研究兼具學術研究及工業應用之重要性。
  • Item
    設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子
    (2014) 呂幸紋
    我們成功合成出一系列有機與有機金屬凝膠,DU97、DU135、DU157和DU169,利用乙炔蒽和乙炔芘與本實驗室發展出易形成凝膠結構合成而得最終產物。這一系列化合物在不同有機溶劑中可以形成凝膠。超分子凝膠的形成主要透過凝膠分子的自組裝,藉由氫鍵作用力、π-π作用力以及C-H-π作用力,接著與溶劑分子間形成次級的作用力而形成凝膠。我們利用1H NMR、吸收光譜及放光光譜證實分子間作用力及光物理變化,分子間自組裝主要以J-type aggregation形式進行,經由SEM及TEM觀察其微觀組裝結構,皆呈現典型的纖維結構。在這一系列凝膠中,DU97具有較佳的凝膠能力,在環己烷中形成穩定的凝膠,臨界凝膠濃度為2.9 mg/mL。另外,含有兩價的鉑金屬之DU135和DU157,表現出特別的光物理性質,DU135除氧後同時具有雙重發光特性,分別在415 nm的螢光及655 nm的磷光。相對的,DU157則僅觀察到438 nm之螢光。然而,DU157在含氯的溶劑中會形成氧加成產物,探討其可能機制,推論可能經由自由基路徑產生單重態氧氣加成於蒽上之反應。
  • Item
    含吡啶環可撓性配子之銅、銀金屬配位聚合物:自組裝合成、結構鑑定與性質研究
    (2016) 林宏睿; Lin, Hung-Jui
    本論文探討含四吡啶環之可撓性配子1,4-bis(di-(3-picolyl)aminomethyl)benzene (p-bpab)與銅離子或銀離子之自組裝反應,並研究生成之配位聚合物的結構特性及其性質。 第一部分為有機配子p-bpab搭配具羧酸基之有機配子與氯化銅水溶液於攝氏120 ℃下進行水熱反應,得到三種化合物{[Cu4(p-bpab)2(suc)3Cl2]•(H2O)6}n (1)、[Cu2(p-bpab)(1,4-ndc)2(H2O)2]n (2)以及{[Cu2(p-bpab)(1,4-ndc)2(H2O)2]•(naphthalene)3}n (3)。化合物1、2與 3的結構都是銅離子與具羧酸基之有機配子形成一維鏈狀結構,並以可撓曲配子p-bpab與一維鏈狀結構上之銅離子配位,形成二維或三維結構。其中化合物1由銅離子、p-bpab與succinic acid鍵結形成特殊三維結構。化合物2由銅離子、p-bpab與nap-1,4-dicarboxylic acid組裝形成二維結構。化合物3之合成條件與化合物2相近,但多加萘進行反應,發現萘環與p-bpab上之吡啶環藉由ππ作用力而導致化合物3之整體二維結構與化合物2截然不同。 第二部分為銀離子與可撓曲配子p-bpab進行室溫自組裝合成,因銀鹽不同陰離子之影響,而得到三種不同的化合物{[Ag2(p-bpab)]•(NO3)2•(CH3OH)}n (4)、{[Ag2(p-bpab)]•(SbF6)2•(CH3OH)6}n (5)及{[Ag2(p-bpab)]•(NO3)•(BF4)•(CH3OH)}n (6),並探討陰離子效應對整體結構影響。使用硝酸銀與p-bpab反應形成具一維正弦波狀結構的化合物4,使用六氟銻酸銀與p-bpab反應形成具一維鋸齒狀結構化合物5,不同陰離子造成的模板效應以及氫鍵等作用力而導致不同的結構。若將化合物4的配方多加入四氟硼酸鈉,反應後形成的化合物6則為化合物4結構中一個硝酸根離子被置換成四氟硼酸陰離子,但化合物6依然為一維正弦波狀結構,且與化合物4大同小異。本結果顯示具硝酸根離子之一維正弦波狀結構非常穩定,即使加入其他陰離子也不影響其結構變化。 第三部分為硝酸銀與p-bpab之室溫自組裝合成,再加入不同芳香環溶劑反應,得到兩種化合物{[Ag2(p-bpab)]•(NO3)2•(toluene)}n (7)、{[Ag8(p-bpab)4]•(NO3)8•(pyrene)•(THF)2}n (8),並探討客分子效應對整體結構影響。研究發現即使加入能與有機配子p-bpab上的芳香環形成作用力的溶劑如甲苯以及芘,化合物7以及化合物8兩者結構皆為一維正弦波狀結構,且與化合物4之結構大同小異,顯示加入少許芳香環溶劑不足以影響結構變化。 第四部分探討化合物4是否具有吸附甲苯的能力,並產生類似於化合物7的結構。結果顯示化合物4可能具有吸附甲苯的能力,但於室溫下的吸附量有限,因此無法完全轉換成類似化合物7的結構。