化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    奈米導電高分子聚苯胺複合材料—製備、特性及其應用
    (2010) 洪瑛鍈; Ying-Ying Horng
    聚苯胺由於其本身獨特的電化學與光學特性,已廣泛地應用在化學、生物檢測器、超級電容器和燃料電池等領域。近年來,一維奈米結構的導電高分子,包括奈米線、奈米棒和奈米管等,具備低維高表面積與有機導體的優勢,更有著令人期待的發展。唯其在實際的應用上,尚須更進一步地探討與研究。本論文探討奈米導電高分子聚苯胺複合材料—製備、特性及其應用,主要內容包括有葡萄糖氧化酶酵素電極的製備,繼而應用於葡萄糖的偵測;另則探討聚苯胺奈米線/碳布與聚苯胺和奈米碳管複合材料電極的製備,以及其在超級電容器的應用。 第一部份為利用電化學合成方法,直接將聚苯胺奈米線成長在碳布表層,並同時植入葡萄糖氧化酶以製備成酵素電極,繼而應用於葡萄糖濃度的偵測。碳布被選擇作為電流的收集器,乃是考慮其具備高導電性、化學穩定性及其高孔洞三維結構可提供高表面積,可提供聚苯胺奈米線更多的成長空間;另由於直接成長的聚苯胺奈米線與碳布之間,有效降低介面瑕疵因素,因而可展現優異的偵測靈敏度。本研究所製備一維聚苯胺奈米線具備高表面積特性,有利於較高濃度葡萄糖氧化酶的植入,可將葡萄糖的偵測靈敏度提高至~2.5 mAmM-1cm-2程度,相關葡萄糖濃度的偵測範圍為0-8 mM,具備可應用於人體葡萄糖濃度的偵側能力。 至於超級電容器的應用,本論文主要探討聚苯胺奈米線/碳布與聚苯胺與奈米碳管,兩種奈米聚苯胺複合材料電極。本研究所製備出的聚苯胺奈米線/碳布電極,不僅具備高單位重量電容值之外,同時也具備相當高的單位面積電容值,顯示出極佳的電容效能。根據定電流充放電分析,其單位重量電容值高達1079Fg-1 ,相關比能量與比功率則分別為100.9Whkg-1和 12.1 Wkg-1,至於其單位面積電容值可高達1.8 Fcm-2程度。然而基於聚苯胺本身的電子傳導性較差(相較於金屬導體),因此在可逆氧化還原轉變的過程中,通常會由於聚苯胺本身的內電阻效應而導致部份電子的損失,降低了電容的穩定性,致使面臨無法長時間重複循環使用的缺點。對於奈米碳管材料而言,由於具備良好的導電性和機械性質,因而奈米碳管和聚苯胺複合材料,可大幅改善電極的導電性。因此,聚苯胺與奈米碳管混合式複合材料所製備電極,不但可提升其功率密度,而且也因具備優良的械性質,有效降低因重複循環使用所造成電極結構上的破壞程度。
  • Item
    Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells
    (Elsevier, 2009-05-15) C.-H. Wang; Chia-Chun Chen; H.-C. Hsu; H.-Y. Du; C.-R. Chen; J.-Y. Hwang; L.-C. Chen; H.-C. Shih; J. Stejskal; K.-H. Chen
    Protonated polyaniline (PANI) is directly polymerized on Nafion 117 (N117), forming a composite membrane, to act as a methanol-blocking layer to reduce the methanol crossover in the direct methanol fuel cell (DMFC), which is beneficial for the DMFC operating at high methanol concentration. The PANI layer grown on the N117 with a thickness of 100 nm has an electrical conductivity of 13.2 S cm−1. The methanol permeability of the PANI/N117 membrane is reduced to 59% of that of the N117 alone, suggesting that the PANI/N117 can effectively reduce the methanol crossover in the DMFC. Comparison of membrane-electrode-assemblies (MEA) using the conventional N117 and the newly developed PANI/N117 composite shows that the PANI/N117-based MEA outputs higher power at high methanol concentration, while the output power of the N117-based MEA is reduced at high methanol concentration due to the methanol crossover. The maximum power density of the PANI/N117-based MEA at 60 °C is 70 mW cm−2 at 6 M methanol solution, which is double the N117-based MEA at the same methanol concentration. The resistance of PANI/N117 composite membrane is reduced at elevated methanol concentration, due to the hydrogen bonding between methanol and PANI pushes the polymer chains apart. It is concluded that the PANI/N117-based MEA performs well at elevated methanol concentration, which is suitable for the long-term operation of the DMFC.